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Abstract: Mechanical ventilated respiratory failure patients may experience asynchronous breathing (AB). 

Frequent occurrence of AB may impose detrimental effect towards patient’s condition, however, there is 

lack of autonomous AB detection approach impedes the explication of aetiology of AB causing 

underestimation of the impact of AB. This research presents a machine learning approach, a dual input 

convolutional neural network (CNN) to identify 5 types of AB and normal breathing by accepting both 

airway pressure and flow waveform profiles concurrently. The model was trained with 6,000 breathing 

cycles and validated with 1,800 isolated data collected from clinical trials. Results show that the trained 

model achieved a median accuracy of 98.6% in the 5-fold cross-validation scheme. When validated with 

unseen patient’s data the trained model achieved an accuracy median of 96.2%. However, the model was 

found to misidentify premature cycling with reverse triggering. The results suggest that it may be difficult 

to clearly distinguish ABs with similar features and should be trained with more data. Nonetheless, this 

research demonstrated that a dual input CNN model able to accurately categorise AB which can potentially 

aid clinicians to better understand a patient’s condition during treatment. 
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1. INTRODUCTION 

Mechanical ventilation (MV) is a life-saving treatment for 

intensive care patients with acute respiratory failure. However, 

this form of medical intervention may be compromised if there 

is frequent occurrence of asynchronous breathing (AB). AB is 

a medical condition characterised as ‘fighting against 

ventilatory support’ in MV patients (Sassoon and Foster, 

2001). Frequent occurrence of AB may impose detrimental 

impact towards patient’s recovery, increases sedative drugs 

usage, lengthen ICU stay and worsen mortality rate (Blanch et 

al., 2015). While there are seven known types of AB with each 

AB poses unique asynchrony characteristics and patterns 

(Nilsestuen and Hargett, Mellott et al., 2014), the adverse 

effect of AB towards patient’s recovery is still under-

recognised due to limited methods to detect and classify them 

during MV treatment. As a result, the conventional approach 

to AB detection often relies and involves labour clinical 

bedside observation of the airway pressure and flow waveform 

(Georgopoulos et al., 2006) to compute asynchronous index 

(AI) (Chao et al., 1997). While AI is the assessment to the 

quality of patient-ventilator interaction, slow visual inspection 

and interpretation of breathing cycle severely impedes the 

assessment. Furthermore, the occurrence of AB is 

spontaneous. Thus, with the prevalence of AB, manual 

computation of PVI assessment is not applicable in a time 

critical clinical environment. Therefore, an automated to 

detect and classify AB can potentially aid clinicians to 

determine the causal mechanism to eradicate AB occurrence 

(de Haro et al., 2019).  

Continuous efforts have been made in the recent years to detect 

AB automatically. For example, Akouminaki et al. (2014) 

monitored AB via the measurement of changes in oesophageal 

pressure. Sinderby et al. (2013) determined the occurrence of 

AB with the use of electrical diaphragm activity measured 

through electrodes incorporated into a nasogastric tube. 

Despite these methods were able to accurately detect AB, 

insertion of balloon catheter or additional probes into 

oesophageal tract is uncommon and not part of ICU routine. 

Gutierrez et al. (2011) presented a method of evaluating 

asynchrony via spectral analysis of airway flow waveform. 

This approach is automatic and non-invasive, but the absence 

of airway pressure consideration in the analysis may lead to 

lower AB detection sensitivity and specificity. Similarly, there 

are AB detection methods that were developed using rule-

based methods; Better care (Blanch et al., 2012) and Time-

varying elastance (Poole et al., 2014) and ALIEN (Chiew et 

al., 2015). However, rule-based methods are susceptible to 

inaccurate and ambiguous perception for selection of threshold 

parameter, which is increasingly challenging to account for 

intra and inter variability in patient data. 

The emergence of machine learning methods has observed 

major advancement in AB detection. Loo et al. (2018) 

proposed convolutional neural network (CNN) machine 

learning algorithm to detect the presence of AB, but the 

method does not perform sub-classification. Zhang et al. 

(2020) implemented a two-layer long short-term memory 

machine learning approach to detect the presence 2 types of 

AB. Despite the model achieved remarkable performance; the 

method is limited to two types of asynchronies detection.  

Gholami et al. (2018) proposed a random forests machine 



 

 

     

 

learning technique to identify cycling asynchrony by 

extracting engineered features that defines the asynchrony. 

However, their non-uniform distribution of datasets may 

introduce biasness to the developed neural network model. 

Thus, there is a need of a machine learning model that can 

detect various forms of AB.  

In this research, we have developed an optimised dual-input 

convolutional neural network (CNN) model to perform a 

larger scale of AB detection that can subcategorise into normal 

breathing cycle with 5 different ABs using only airway 

pressure and flow waveform profile. The proposed CNN 

model is able to capture the morphological characteristics of 

AB types, and to classify them with high accuracy. 

2. METHODOLOGY 

2.1  Patient Data 

Retrospective airway pressure and flow of 23 MV patients 

from an observational trial (Chiew et al., 2018a) were used for 

this research. The data were collected at 50 Hz using a CURE 

data acquisition system (Szlavecz et al., 2014). The trial was 

approved by the International Islamic University Malaysia 

Medical Center Research Ethics Committee (Ref: IREC666).  

2.2  Data Annotation 

Detection and classification AB can often be confusing (Pan et 

al., 2021) due to vague erratic asynchrony features. Therefore, 

identification of AB at clinical beside usually conducted by 

trained clinicians which only focuses on apparent features on 

the airway pressure and flow waveform profile. The ability of 

CNN to extract these critical features automatically from the 

given patient’s data during training eliminates the resources to 

train clinicians to identify them. Figure 1 depicts different type 

of AB with each AB possesses its unique identification 

features detailed in Table 1. 

 

 

 
Fig. 1. Different types of AB based on the retrospective patient airway pressure and flow waveform. 

 

Table 1. Sub-types of AB, their definitions and identification features 

AB Type Definition  Identification features  

Reverse 

Triggering 

(RT) 

Mechanically insufflation-triggered breathing due 

to activation of neural response of the lung.  

Manifested as a drop in airway pressure midway of 

inspiration phase. 

Double 

Triggering 

(DT) 

Continued effort resulting stacked breathes; when 

one inspiration cycle ends, another inspiratory 

effort is triggered due to high patient demand. 

Evident when the expiration time is less than one third of 

inspiration time. On pressure-time waveform, the pressure 

profile will span wider due to significantly longer 

inspiratory effort. 

Flow 

Starvation 

(FS) 

Persistence of inspiratory effort due to inadequate 

flow delivery from the MV. 

Visually recognised by identifying the ‘scooped out’ or 

‘sucked-down’ feature on the pressure waveform which 

indicates excessive diaphragmatic muscle loading. 

Premature 

Cycling 

(PC) 

Persistence of inspiratory effort due to early 

termination of inspiratory support from MV. 

Manifested as an upward concavity on pressure waveform 

and downward concavity on the flow waveform at the 

initiation of expiration phase. 

Delay 

Cycling 

(DC) 

Prolongation of inspiration phase due to late 

termination of inspiratory supported breath even 

after the activation of patient’s expiratory muscle. 

Exhibits itself in the form of ‘pressure-spike’ or ‘pressure-

tent’ prior to the initiation of expiration phase which 

represents the accumulation of air. 



 

 

     

 

 
Fig. 2. Overview of dual-input CNN model architecture developed in this study. 

 

In this study, a total of 42,245 breathing cycles were manually 

annotated and categorised into five different types of AB 

namely reverse triggering (RT), double triggering (DT), flow 

starvation (FS), premature cycling (PC) and delayed cycling 

(DC) as well as normal breathing (NR) cycle. We established 

two datasets with one for model training while the other to 

validate the performance of the trained model. For training 

dataset, each category consists of 1,000 training data whereas, 

the validation dataset consists of 300 breathing cycle for each 

category. The validation datasets are randomly selected and 

segregated from the training datasets. In other words, the 

performance of the trained model will be assessed with unseen 

actual patient’s data. The specifics of the manually annotated 

datasets are presented in Table 2. It should be noted that the 

uniform distributed datasets are critical to ensure that the 

network demonstrates unbiased and accurate training, and 

predictive performance. 

 

Table 2. Specifics of patient data annotation 

 Dataset 1 

(Training) 

Dataset 2 

(Validation) 

Total Data screened  29745 12500  

RT  1384 (1000)  1651(300)  

DT  1234 (1000)  430 (300)  

FS  1004 (1000)  325 (300)  

PC  1013 (1000)  380 (300)  

DC  1009 (1000)  382 (300)  

(Normal/Noise)  24101 (1000) 9332 (300) 

2.3  Convolution Neural Network and Architecture 

Convolutional neural network is an artificial neural network 

widely deployed to perform multi-classification (Dhillon and 

Verma, 2020). The building blocks of convolution layers 

alternating with subsampling layer imitate the structure of a 

visual cortex which comprises of both complex and simple 

cells (O'Shea and Nash, 2015). These features enable CNN to 

extract and ‘understand’ high-level essential patterns 

automatically via its adaptable parameters in the convolution 

layer during training.  

In this research, we developed a dual input CNN model to 

accept one-dimensional structured airway pressure and flow 

waveforms inputs. The dual-input CNN model is designed to 

extract localised high-level features on the both the airway 

pressure and flow waveform that describes the distinct 

morphological characteristic of different subclasses of AB 

according to the definition in Table 1. This approach imitates 

the clinical diagnosis of AB via analysing patterns in both 

airway pressure and flow waveform profile more accurately. 

The overview architecture of the CNN model is depicted in 

Figure 2 with each of its configuration listed in Table 3.  

Table 3. Properties of the proposed CNN architecture 

Stream Layer Properties 

F, P 

Input  180x1 

Convolution-1 32 filters, 3 strides 

Batch Normalisation-1  

Activation-1 LReLU (𝑎 = 0.1) 

Max-pooling-1 2 

Dropout-1 0.25 

Convolution-2 32, 3 

Batch Normalisation-2  

Activation-2 LReLU (𝑎 = 0.1) 

Max-pooling-2 2 

Dropout-2 0.25 

Convolution-3  32, 3 

Batch Normalisation-3  

Activation-3 LReLU (𝑎 = 0.1) 

Max-pooling-3 2 

Dropout-3 0.4 

C 

Fully Connected  512 

Batch Normalisation  

Activation LReLU (𝑎 = 0.1) 

Dropout  0.25 

Fully Connected  0.5 

Activation  Softmax 



 

 

     

 

2.3.1  Input Layer (Stream-F and Stream-P) 

The dual-input CNN model is branched into two streams, 

namely Stream-F (Flow) and Stream-P (Pressure) which 

accepts flow and airway pressure waveform respectively. The 

magnitude of both airway pressure and flow waveform profile 

are normalised to 0 and 1 as well as the datapoints are resample 

to 180 data points to standardise the training input data length. 

Pre-processing is necessary as it accelerates the convergence 

during training (Jin et al., 2015). 

2.3.2  Convolutional Layer 

Convolution layer is responsible in crucial localised features 

extraction from the connected input via the application of 

convolving kernels. The operation of convolution in 

convolutional layer is expressed in Equation 1, where 𝑓 

denotes the activation function, * denotes convolution 

operation, 𝑤𝑖  represents the weight tensor at 𝑖 − 𝑡ℎ neuron, 𝑥𝑖 

represents the input vector at 𝑖 − 𝑡ℎ neuron and, 𝑏 denotes the 

bias value. In this research, each convolutional layer consists 

of 32 filers with kernel size equals to 3 with stride of 1.  

𝑦 = 𝑓(∑ 𝑤𝑖 ∗ 𝑥𝑖 + 𝑏)    (1) 

2.3.3  Activation Function and Batch Normalisation 

Activation function and batch normalisation both play an 

important role in ensuring the input elements are capped within 

a manageable range by normalising and rectifying non-

acceptable range of values (Nwankpa et al., 2018). In this 

study, all the outputs from convolution layer undergo batch-

normalisation operation followed by activation function 

namely leaky rectified linear unit (LReLU). While the linear 

behaviour and sparsity representation of ReLU has 

demonstrated computational efficient in CNN models 

(Krizhevsky et al., 2017), LReLU is preferred in our model 

due to its ability to avoid ‘dying ReLU’ due to deterrence of 

learning gradient recovery if output is activated as zero (Maas, 

2013). The piecewise function is expressed in Equation 2 

where 𝑎 denotes the allowable negative slope coefficient and 

𝑥 and 𝑦 is the input and output respectively. On the other hand, 

Softmax activation function which calculates the probability 

distribution of each AB type over the total number classes to 

constrained predicted outcome within 0 and 1 is applied to the 

output of the CNN model.   

𝑦 =  {
𝑥,          𝑖𝑓 𝑥 > 0
𝑎𝑥,       𝑖𝑓 𝑥 ≤ 0

    (2) 

2.3.4 Max-pooling Layer and Dropout Layer 

Pooling layers serve the purpose to decrease the dimension of 

features gradually to control overfitting and computational 

complexity (O'Shea and Nash, 2015). The operation of max-

pooling is expressed, where the output is the maximum 

element of the non-overlapping portioned sub-regions. On the 

other hand, dropout layer improves generalisation ability of the 

CNN model by omitting few percentage of neurons randomly 

during training to prevent the overfitting (Srivastava et al., 

2014).  

2.3.5  Classification (Stream-C) 

This layer merges and flattens the multi-dimensional extracted 

vital features from Stream-F and Stream-P. This allows the 

trainable parameters in the neurons to ‘learn’ to classify 

breathing cycle into 6 different categories. A total of 2 fully 

connected layers with 512 and 6 output neurons respectively 

contains trainable weights and bias. Similarly, each neuron 

undergoes batch-normalisation and dropout layer to control 

overfitting. Categorical cross-entropy loss function was 

implemented to update the parameters with Adam as 

optimiser.  

2.4  Computational Setup and Training Process 

The entire development and training of CNN model in this 

study was developed using Keras deep learning library which 

allows the utilisation of Graphical Processing Unit (GPU) to 

train CNN on Python programming language. In addition, all 

simulations were trained on Intel Core i7-9750H, 16GB 

random access memory and a NVIDIA GeForce RTX 2060. 

To ensure reproducibility, the models were initialised with the 

same random seed and trained with 50 epochs.  

2.5  CNN Performance Evaluation 

To assess the performance of the CNN model, a 5-fold cross 

validation technique is implemented as illustrated in Figure 3. 

5-fold cross validation segregates the Dataset 1 into 5 mutually 

exclusive set, whereby 4 of the sets are used for CNN training 

while the remaining unseen datasets are used to evaluate the 

performance of the trained model. The 4 of the datasets are 

split internally into 70:30 ratio for training and validation 

during training. This process is repeated until each of the 5 

mutually exclusive sets are tested. The average accuracy of the 

trained model evaluated via K-fold analysis will help to 

determine the consistency of the CNN model performance.  

 
Fig. 3. 5-fold cross validation scheme applied to test the 

robustness of the proposed model.  

 

Subsequently, the model with highest accuracy among the K-

fold will be selected to assess its performance with Dataset 2. 

This is to evaluate the model’s performance with unseen actual 

patient data via the computation of accuracy, sensitivity and 

specificity using Equations (3-5). In this study, the sensitivity 

and specificity analysis use one against all approach whereby 

NR is considered as condition positive while the rest is 

considered as condition negative. In other words, true positive, 

TP denotes as the NR correctly identified and true negative, 



 

 

     

 

TN denotes as any AB correctly identified as AB. False 

positive, FP and false negative, FN represents the falsely 

identified AB as NB and vice versa respectively.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (3) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (5) 

3. RESULTS 

The results for the 5-fold cross-validation are presented in 

Table 4 with an average of 97% for all validation dataset cases. 

It also shows that the first K-fold iteration attained highest 

accuracy. The highest accuracy model was then selected to 

perform classification using total of 1,800 unseen patient’s 

data. Besides that, the confusion metrics shown in Table 5 

shows that CNN yielded lowest accuracy when classifying PC 

with only 53.7% accuracy, whereas CNN attained near 100% 

accuracy when detecting DC and DT. Overall, CNN achieved 

100% and 98.7% sensitivity and specificity respectively when 

assessing validation dataset.  

Table 4. Accuracy of trained model for each k-fold  

K-fold iteration Accuracy (%) 

1 98.8 

2 98.7 

3 97.5 

4 90.4 

5 98.6 

Median 98.6 

Table 5. Performance assessment of the trained CNN 

tabulated in confusion matrix 

  Predicted Accuracy (%) 
  NR RT FS PC DC DT  

A
ct

u
a

l 

NR 281 9 0 0 10 0 93.7 

RT 0 276 0 0 24 0 92.0 

FS 0 0 296 0 4 0 98.7 

PC 0 139 0 161 0 0 53.7 

DC 0 1 0 0 299 0 99.7 

DT 0 1 0 0 0 299 99.7 

Median [Interquartile range] 96.2 [92.0–99.7] 

4. DISCUSSION 

This developed CNN architecture is one of the few AB 

detection machine learning approach capable of categorising 5 

types of AB and identifying normal breathing by using both 

airway pressure and flow waveform profile as inputs. The 

integration of both airway pressure and flow waveform profile 

during training which is essential and necessary to accurately 

define and characterise different types of AB.  

Table 4 shows that the consistent accuracy yielded from 5-fold 

cross-validation implies the robustness and great ability of 

CNN to extract critical unique features to identify different 

types of AB accurately. However, the results shown in Table 

5 shows low accuracy when detecting PC, and it is often 

confused with RT. We speculate that low accuracy could be 

due to the subtle PC features is very similar to a RT as shown 

in Figure 1 (Pan et al., 2021, Baedorf Kassis et al., 2021). 

Therefore, training the CNN with additional data or modifying 

the number of convolutional layers to extract these indistinct 

features could potentially improve the performance. 

While the CNN model presented in this research work were 

able to perform well, there are some limitations that ought to 

be addressed. The present work mainly involves the study 

population of the MV patients ventilated using SIMV mode. 

As the manifestation of the breathing cycles or AB is largely 

dependent on the MV modes (Baedorf Kassis et al., 2021). 

Thus, implementing this algorithm at the bedside using a 

monitoring system (Ng et al., 2020, Ng et al., 2021)to detect 

AB autonomously still requires additional effort to develop 

CNN model to detect AB present in different MV modes.  

This CNN model was not trained to identify the presence of 

ineffective triggering due to insufficient datasets. Despite 

existing techniques suggest that resampling data may be able 

to cope with imbalance dataset (Rehm et al., 2018), we believe 

that collecting more data is more favourable. Therefore, to 

avoid non-uniform distribution of datasets which might 

introduce model bias, IE detection is removed. Similarly, auto-

triggering (AT) is not included in the datasets due to the lack 

of additional information such as oesophageal pressure or 

electrical activity of diaphragm (Pham et al., 2021). 

Nonetheless, the CNN model proposed here is able to detect 

the presence of AB. Further studies should be focused in 

examining the magnitude of different types of AB and their 

impact towards patient’s condition and their outcome (Chiew 

et al., 2018b, Loo et al., 2021).  

5. CONCLUSION 

The CNN model developed in this study showed promising 

results with the ability to detect and classify 5 types of AB and 

normal breathing with an average accuracy of around 90%. Its 

potential implementation in clinical environment could help 

clinicians to better understand patient’s condition during 

treatment and help in managing patient-ventilator interaction.  
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