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Abstract: The paper addresses the design of aH∞ closed-loop dedicated to Blood Glucose (BG)
regulation for patients affected by Type-1 Diabetes Mellitus (T1DM). The closed-loop setup is
standard, i.e. the H∞ feedback controller uses the information provided by a subcutaneous
sensor to drive an insulin pump but as opposed to current existing solutions, it is proposed to
assess the capabilities of a H∞ controller to be designed in a patient-independent way. For that
purpose, the design is performed on a family of linear models in order to tackle the variability of
a cohort of T1DM patients. Worst-case performance and robust margins are next computed with
the help of the H∞/µ-analysis theory. The solution is finally assessed on the adult cohort of the
high-fidelity UVA/Padova benchmark (v3.2), accepted by the US Food and Drug Administration
(FDA) as a substitute for pre-clinical testing of control strategies.
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1. INTRODUCTION

Type-1 diabetes Mellitus (T1DM) is an autoimmune dis-
ease associated with β pancreatic cell death, which delivers
the insulin necessary for Blood Glucose (BG) control. To
avoid hyperglycemia (BG > 180mg/dL) and hypoglycemia
(BG < 70mg/dL), the design of partially automated de-
vices known as Artificial Pancreas (AP), receives a grow-
ing attention for non-intrusive care for T1DM patients
(Rodbard, 2016). From the different elements that make
up a AP, the controller is in charge of processing the
information delivered by a Continuous Glucose Monitor
(CGM) sensor to maintain the BG level in the so-called
normoglycaemia range (70 mg/dL <BG< 180 mg/dL) by
acting on an insulin pump. The present work focuses on
an alternative control design for BG regulation.

From a recent survey (Quiroz, 2019), the available control
design methodologies include those based on sliding mode
theory (Gallardo Hernández et al., 2013; Franco et al.,
2021), Proprotional-Integral-Derivative (PID) (Steil et al.,
2011; Olçomendy et al., 2020), Linear Parameter-Varying
(LPV) tools, (Kovács, 2017; Colmegna et al., 2021) and
Model Predictive Control (MPC) (Del Favero et al., 2014;
Gondhalekar et al., 2018) to name a few. In this paper, it is
proposed to focus on works developed in a H∞ framework.
The work (Kienitz and Yoneyama, 1993) addressed for

the first time the BG regulation with H∞ techniques to
manage the considerable amount of model uncertainty.
This work has been followed by (Parker et al., 2000)
where a sensitivity analysis provides the three-parameter
set having the most significant effect on insulin and glucose
dynamics. The BG regulation has been next formulated
as a tracking one in (Ruiz-Velázquez et al., 2004) where
a Glucose Tolerance Curve (GTC) of healthy patients
has been used as reference model. Next, it is possible to
find several robust H∞ controllers (Femat et al., 2009;
Flores-Gutiérrez et al., 2011; Mandal et al., 2014) that
have been designed for an intravenous BG measurement.
Motivated by the possibility of finding distinct frequency
responses for a T1DM patient cohort, an attempt has been
made to individualize the controller design in (Hernández-
Medina et al., 2018). However, the price to pay is an
increased complexity to tune the controller for clinicians
and patients, which can not be always compliant with
medical protocols.

The goal of this paper is to propose an alternative to the
previous H∞ control solutions. More precisely, it proposes
to design a unique feedback controller able to be robust
to the physiological characteristic variability of an adult
patient cohort. Using the powerful H∞ controller design
theory applied to clinical issues, individual tuning is not
required anymore. From the nonlinear model proposed in



(Dalla Man et al., 2014; Messori et al., 2018), a family of
uncertain linear time invariant (LTI) models is established
to capture physiological variabilities (Cassany et al., 2021).
Here, we investigate a robust H∞ controller designed
with the H∞ mixed-sensitivity approach (Zhou and Doyle,
1998). An analysis is then performed to highlight the
robust margins and worst-case performance by means
of the H∞/µ-analysis theory. The proposed solution is
finally assessed in the nonlinear UVA/Padova simulator
(v3.2) developed under a Matlab/Simulink environment.
This simulator is the first (and currently only) T1DM
model accepted by the U.S. Food and Drug Administration
(FDA) as a substitute for pre-clinical testing of new
treatment strategies for T1DM. It provides a realistic
simulation environment to assess new control algorithms
under high-fidelity conditions with a representative cohort
of T1DM patients (eleven adults in this study case).

The paper is organized as follows: section 2 provides some
preliminaries to tackle the H∞ mixed-sensitivity approach.
Section 3 deals with the application to T1DM issue and
Section 4 presents the simulation results in the T1DM
simulator.

Notations: s is the Laplace transform variable and for
a linear state space model (A,B,C,D), P (s) (or sim-
ply P ) is its associated Laplace transform. The nota-

tion P (s) :

[
A B
C D

]
is used in the paper. P (s) is as-

sumed to belong to RH∞, defined as the real ratio-
nal functions set, with ||P ||∞ = supω σ(P (jω)) < ∞,
where σ(P ) denotes the maximum singular value of the

matrix P . For some matrices N and M =
(
M11 M12

M21 M22

)
,

the upper Linear Fractional Transformation (LFT) is de-
fined as Fu(M,N) = M22 + M21N(I − M11N)−1M12.
Given M(s) and a block-diagonal operator ∆ ∈ ∆ :
||∆||∞ ≤ 1 that gathers all uncertainties of a given model
in a so-called M − ∆ structure, the structured singular
value µ∆(M(jω)) : ω ∈ R+ is equal to zero if no ∆
makes I − M(jω)∆ singular. Otherwise µ∆(M(jω)) =

[min∆∈∆ {σ(∆) : det(I −M(jω)∆) = 0}]−1
.

2. MATERIAL BACKGROUNDS OF H∞ CONTROL

The goal of the H∞ mixed-sensitivity control approach
is to design a controller K(s) that stabilizes the closed-
loop system and achieve some required robustness and
control performance (Kwakernaak, 1993; Zhou and Doyle,
1998). The performance are also expressed as constraints
W1(s) and W2(s), see Fig. 1 for an illustration. They act
as frequency weighting functions that allow to shape the
sensitivity function S(s) = (I + G(s)K(s))−1 and the
control sensitivity function R(s) = K(s)S(s) in the H∞-
norm sense, i.e.

σ (S(jω)) ≤ |W−1
1 (jω)|, ∀ω ∈ R+, (1)

σ (R(jω)) ≤ |W−1
2 (jω)|, ∀ω ∈ R+, (2)

where W1(s) is used to ensure that the controller K(s)
meets some performance criteria such as time response,
static error, module margin, etc. W2(s) is used to enforce
the control signal u to meet required specifications such as
noise amplification, avoiding control saturation, minimis-
ing the energy ||u||2.
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Fig. 1. Block diagram of the mixed sensitivity approach.

Merging (1) and (2) into a unique H∞ constraint leads to

‖Tzr‖∞ ≤ 1, with Tzr(s) =

(
W1(s)S(s)
W2(s)R(s)

)
(3)

where Tzr(s) is the transfer from r to z. However, this is
a sub-optimal problem to solve of (1) and (2) since, at a
given frequency ω∗,

σ

(
W1(jω∗)S(jω∗)
W2(jω∗)R(jω∗)

)
≤
√

2 max (σ(W1(jω∗)S(jω∗)),

σ(W2(jω∗)R(jω∗)))

by virtue of the singular value properties. This means that
the solution of (3) will be close to

√
2 of the optimal

solution.

K
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P

Fig. 2. The H∞ standard problem.

From (3), the block diagram of Fig. 1 can be transformed
into the diagram depicted in Fig. 2, referred as the stan-
dard H∞ problem. In that context, P (s) is the augmented
system that contains W1(s) and W2(s). The controller
design problem can then be stated as follows. Given a
real rational transfer matrix P (s) and a space K of real
rational transfer matrices K(s) called the controller space,
the computation of an optimal solution K∗(s) ∈ K leads
to the solving of the following optimization problem

minimize γ

subject to K(s) stabilizes P (s) internally (4)

K(s) ∈ K, ‖Tzr‖∞ ≤ γ
If the optimal value γ∗ is strictly less than 1, then
(1) and (2) hold. This is a sufficient condition for K∗,

since a parameter γ∗ such that 1 ≤ γ∗ ≤
√

2 may
correspond to a viable controller because of (4). That is
why, practically, (1) and (2) are a posteriori verified by
plotting the so-called “sigma-plot”. As we shall see from
(4), the choice of the controller space K is the key for a
proper understanding of the problem. Let us define the
following notations:

P (s) :

 A B1 B2

C1 D11 D12

C2 D21 D22

 K(s) :

[
AK BK
CK DK

]
(5)

with A ∈ Rn×n, B2 ∈ Rn×nu , C2 ∈ Rny×n and Ak ∈
Rnk×nk . The so-called “full-order controller” solution be-
haves to the solutions within of the space

K = {K(s) : K(s) has the form (5) with nk = n} (6)

which is a convex space. Thus, finding a solution within K
may be done by using an optimization algorithm.



In (Gahinet and Apkarian, 1994), the authors propose an
algorithm by reducing (4) to a semi definite programming
problem. This technique is retained in this paper.

3. APPLICATION TO THE T1DM ISSUE

The work presented in this paper follows a preliminary
one reported in (Cassany et al., 2021) which introduces
a way to model T1DM patients by means of a family
of linear models. This family of linear models is used to
cover the cohort dynamics of adult patients with different
physiological characteristics (age, weight, etc.), see section
II.A of (Cassany et al., 2021). Here, the focus is made on
the integration of uncertainties in this cohort modelling
step by using Linear Fractional Transformation (LFT).
Then, the control problem is formulated in H∞ framework
and addressed through an equivalent LMI problem solving.
The controller design is next addressed with the choice of
the weighting functions. Finally, a discussion is proposed
to evaluate the nominal performance, the robust stability
and the a posteriori worst-case analysis.

3.1 Modelling issues

The method reported in (Cassany et al., 2021) enables to
model the T1DM patient’s dynamics as a family of linear
models. The key element relies on finding an equivalent lin-
ear model of the nonlinear model presented in (Dalla Man
et al., 2014), for judiciously chosen set points. To pro-
ceed, the method considers time horizon [0, T ] divided into
subintervals such that 0 = t0 < ... < tk < tn = T . The set
λ = (λ0, ..., λk, λn) is defined such as:

λ0 ∈ [t0,
t1
2 ],

λk ∈ [ tk+tk−1

2 , tk+1+tk
2 ] for 1 ≤ k < n,

λn ∈ [ tn+tn−1

2 , tn],

(7)

On each subinterval, t ∈ λk for k ∈ {0, ..., n}, k linear
models associated to patient index i = {1, ..., 11}, are built
so that {

ẋi(t) = A(ρ)ikx
i(t) +B(ρ)iku

i(t)

yi(t) = C(ρ)ikx
i(t)

(8)

x(t) ∈ R13, u(t) ∈ R2, y(t) ∈ R are respectively the
model state, input and output vectors, with the matrices
Aik ∈ R13×13, Bik ∈ R13×2 and Cik ∈ R1×13. A key feature
in this model is that the 4th and 13th states are the
BG’s and the subcutaneous (SC) glucose concentrations,
respectively. Since it is assumed that a CGM equips the
patients, we have yi(t) = xi13(t).

Two sources of uncertainty are considered in this work:
the patient’s characteristics (like weight, age, etc.) and
the dynamics of BG diffusion to the SC space, where the
electrode of the CGM is inserted. These uncertainties are
also captured by the vector ρ that enters in (8).

With regards to the patient’s characteristics, they are
modelled using the so-called non-structured multiplicative
uncertainty form, that is reformulated using the LFT
formalism. Such a model is derived from (8) as follows:

Gbik(s) = C4(ρ)ik(sI −A(ρ)ik)−1B(ρ)iks ∀i, k
= Gb0(s)(1 +Wunc(s)∆b(s)) = Fu(Pb(s),∆b(s))

(9)
where C4(ρ) is used to refer to the 4th state.

In (9), ∆b is normalized (i.e. ||∆b||∞ ≤ 1), which implies

|Wunc(jω)| ≥
∣∣Gbik(jω)/Gb0(jω)− 1

∣∣ , ∀i, k, ω, (10)

This latest equation offers a constructive solution to de-
termine the couple (Gb0,Wunc). In particular, the op-
timal solution (Gb∗0,W

∗
unc) in the sense of the smallest

conservative LFT, is constructed such that ||Wunc||∞ is
minimal. This optimization problem leads to the results
given in Fig. 3, where W ∗unc is found of order 11. However,
choosing a simple constant for Wunc ≈ 0.92 leads the LFT
Fu(Pb(s),∆b(s)) to be less complex, with a little extra
conservativeness. The maximum gap between the optimal
solution W ∗unc and Wunc ≈ 0.92 is about 1.5dB. Towards
this end, the constant solution is retained in this paper.

Fig. 3. Frequency behaviour of
∣∣Gik(jω)/G0(jω)− 1

∣∣
(blue), W ∗unc(jω) (green) and Wunc (red).

With regards to the dynamics of the BG’s diffusion to the
SC space, a deeper analysis of the model (8) reveals that
it is reflected by a gain variation of the transfer between
the 4th and the 13th state. Such a variation can be easily
captured by a LFT so that

Gsc
i
k(s) = Fu(Psc(s),∆sc),∀i, k∆sc ∈ R : |∆sc| ≤ 1 (11)

3.2 Control problem formulation

We are now ready to formulate the control design problem:
in accordance with the theory explained in Section 2, let’s
consider the mixed-sensitivity H∞ control setup given in
Fig. 4 with the LFTs (9) and (11). The goal is to compute
the controller K(s) so that

‖Fu (Fl(P (s),K(s)),∆)‖∞ < 1,∆ ∈ R2 : ‖∆‖∞ ≤ 1,
(12)

where ∆ = diag(∆b,∆SC). In Fig. 4, GDAC refers to
the digital-analog converter considered here as a delay of
T/2, T = 1 min (a Pade approximation of first order is
used here). P (s) is obtained from the different transfers
occurring in Fig. 4.left, using linear-fractional algebra:
z∆b

z∆sc

z1

z2

εsc

 =


Pb11 0 0 Pb12

Psc12Pb21 Psc11 0 Psc12GDACPb22
−W1Pb21 0 W1 −W1GDACPb22

0 0 0 W2

−Psc22Pb21 −Psc21 1 −Psc22GDACPb22


w∆b

w∆sc

r
u

 ,

(13)

with Pb =

(
Pb11 Pb12
Pb21 Pb22

)
, Psc =

(
Psc11 Psc12
Psc21 Psc22

)
:

Pbij , Pscij ∈ C1 ∀i, j.
The originality of the proposed control problem formu-
lation as opposed to those addressed in (Femat et al.,
2009; Flores-Gutiérrez et al., 2011; Mandal et al., 2014),



Fig. 4. Mixed sensitivity approach for the T1DM issue.

relies on the fact that the control objectives are set on
the BG’s concentration (i.e. the 4th state of (8)) without
having a direct measurement of it, the measure being the
SC’s glucose concentration (i.e. the 13th state of (8)). This
particular facet motivates the choice to capture the SC’s
dynamics variability in the LFT (11).

3.3 Design of the controller K(s)

Following the methodology explained in Section 2, the
problem now turns out to be the definition of the weighting
functions W1 and W2 that will constraint the sensitivity
and control sensitivity functions S andR defined according
to:
S(s,∆) = [1 +K(s)GDACFu(Pb(s),∆b) (Fu(Psc(s),∆sc)− 1)]

[1 +GDACFu(Pb(s),∆b)Fu(Psc(s),∆sc)K(s)]
−1

(14)

R(s,∆) = K(s) [1 + Fu(Pb(s),∆b)Fu(Psc(s),∆sc)GDACK(s)]
−1

(15)
To proceed, let W−1

1 (s) be defined as

W−1
1 (s) = g1

(
s+ ωl
s+ ωc1

)
, (16)

where ωc1 is the minimal bandwidth required for the
closed-loop, ωl is a frequency introduced to make W1(s)
invertible and can be chosen arbitrarily. The lower ωl is,
the lower will be the gain of W−1

1 (s) (and S(s)) in low
frequencies, resulting in a small static tracking error. g1

is the gain of W−1
1 (s) in high frequencies and represents

the constraint on the gain margin. For our application,
ωc1 is set to 0.03 rad/min, ωl to 10−7 rad/min and g1 to
5.6 (≈ 15 dB).

With regards to W2(s), let W−1
2 (s) be defined as

W−1
2 (s) = g2

(
1/ωhs+ 1

1/ωc2s+ 1

)
, (17)

where ωh is chosen such that invertibility property of
W2(s) is guaranteed and the constraint ωh >> ωc2 holds.
Since the sampling rate in the T1DM simulator is set
to T = 1 min, ωh does not need to be set higher than
ωh = π/T , according to Nyquist–Shannon theorem. The
term g2/ (1/ωc2s+ 1) is a low-pass filter in which an
adequate choice of (g2, ωc2) is achieved to minimize the
control signal energy. Here, we have g2 = 17.7 (≈ 25 dB)
and ωc2 = 5ωc1.

By such a choice, it can be verified that the control
specifications have been fixed according to:

• S.1) A minimum gain margin of 5dB for S(s,∆).

• S.2) A maximum bandwidth of ωc = 0.03 rad/min for
R(s,∆).

Practical considerations: There exist two main practical
approaches to calculate K(s) that solves (12). i) The
first one consists in using the small gain theorem with
(13). The result is known to be conservative since the
small gain theorem does not consider neither the diagonal
structure of ∆ nor its nature. The µ–based criteria that are
discussed in the next section are then used to assess the
conservativeness of K(s). ii) The second approach consists
in choosing a judicious numerical value ∆0 for ∆ and to
compute the controller K(s) over Fu(P,∆0). Because we
have no guarantee that the resulting controller is able to
satisfy the specifications for all ∆, µ analysis is required.
However, we know that if we want to have a chance to
succeed, γ in (4) must not be close to 1.

In this work, the second approach is used with ∆0 = 0,
i.e. the design of K(s) is done using the nominal model
associated to P (s). i) Using Matlab, (9) and (11) are first
computed in order to assess their respective uncertainties.
ii) After choosing the weighting functions in (16) and (17),
one can build the interconnection matrix P (s) in (13). iii)
The problem described in (4) is finally solved using the
SDP technique proposed in (Gahinet and Apkarian, 1994).
The result leads to an optimal value for γ, found to be
γ∗ ≈ 0.48.

3.4 Performance and worst-case analysis

As previously explained, µ–based criteria are now com-
puted to assess robust stability and worst-case perfor-
mance. The goal is to check if Specifications S.1 and S.2
are met. Due to space limitation, the reader is invited to
refer to (Packard and Doyle, 1993) and (Zhou and Doyle,
1998) for the necessary background about µ concepts.

To proceed, S(s,∆) is put in a LFT manner, i.e. S(s,∆) =
Fu(M,∆) : εb(s) = S(s,∆)r(s) where M is partitioned
according to the input/output signals εb/r and w∆ = ∆z∆

leading to M =
(
M11(s) M12(s)
M21(s) M22(s)

)
.

Robust stability margins: The robust stability margin is
defined as mr = [maxω∈Ω µ∆(M11(jω))]

−1
. If mr > 1,

robust stability is achieved for all ∆ ∈ ∆ : ||∆||∞ ≤ 1.
The worst-case input-output gain/phase margins mg/mφ

are the highest value of the gain/phase shift that can be
inserted without destabilizing the closed-loop. ∆m and ωm
are the uncertainties and frequency, when this maximum
gain/phase shift occurs.



Table 1. Performance metrics averaged on 50 simulations per patient (STD in parenthesis)

Patient
ID

Time above range (%) Time in range (%) Time below range (%)
> 250(mg/dl) 180− 250(mg/dl) 70− 180(mg/dl) 54− 70(mg/dl) < 54(mg/dl)

1 0 (0) 13.25 (1.39) 86.75 (1.39) 0 (0) 0 (0)

2 0 (0) 8.95 (1.35) 91.05 (1.35) 0 (0) 0 (0)

3 0 (0) 9.02 (2.58) 90.98 (2.58) 0 (0) 0 (0)

4 0 (0) 11.94 (3.29) 88.06 (3.29) 0 (0) 0 (0)

5 0 (0) 26.23 (2.24) 73.77 (2.24) 0 (0) 0 (0)

6 0 (0) 24.50 (0.76) 75.50 (0.76) 0 (0) 0 (0)

7 0 (0.88) 22.14 (1.05) 77.86 (0.94) 0 (0.31) 0 (0)

8 0 (0) 33.52 (1.09) 66.48 (1.09) 0 (0) 0 (0)

9 0 (0) 18.04 (1.30) 81.96 (1.30) 0 (0) 0 (0)

10 0 (0) 4.58 (1.86) 95.42 (1.86) 0 (0) 0 (0)

11 0 (0) 20.6 (1.32) 79.94 (1.32) 0 (0) 0 (0)

In our case, the following results are obtained: mr ≈ 1.1
(highlighting robust stability for all considered patients,
i.e. the unique designed controller is a stabilizing solution
for the overall adults cohort), mg ≈ 1.42 (3dB), mφ ≈ 19◦,
ωm ≈ 0.0287 rad/min and ∆m = diag(1,−1). Since the
worst-case gain shift occurs at the frequency ωm where the
uncertainties have been overestimated of approximately
1.5 dB (see Fig. 3), we argue that specification S.1 is met.
Note that the worst-case uncertainties ∆m corresponds to
the patient N◦7.

Worst-case analysis: Assuming that mr > 1, one can

compute the worst-case H∞ performance level m
(S)
∞ of

S. m
(S)
∞ is defined as the highest value of ||Fu(M,∆)||∞

when ∆ takes its values in ∆ : ||∆||∞ ≤ 1. ω
(S)
∞ is the

frequency and ∆
(S)
∞ is the value of ∆ when this worst-

case happens. Similarly, m
(R)
∞ , ω

(R)
∞ ,∆

(R)
∞ define the worst-

case H∞ performance criteria for the control sensitivity
function R(s,∆) defined in (15).

The frequency response of S(s,∆) is plotted on Fig. 5. The
maximum overshoot of S(jω,∆) caused by the controller is

m
(S)
∞ ≈ 3.37(10 dB) and happens at ω

(S)
∞ ≈ 0.029 rad/min

for ∆
(S)
∞ = diag(1,−1). Since max∆∈∆:||∆||∞≤1(ωc) <

0.03 rad/min, we can conclude that (S.2) is met. In the

same way, see Fig. 6, m
(R)
∞ ≈ 10.3(20 dB), ω

(R)
∞ ≈

0.033 rad/min and ∆
(R)
∞ = diag(1, 1).

Fig. 5. Frequency response of S(jω,∆)

To conclude, the derived µ–criteria demonstrate that Spec-
ifications S.1) and S.2) are met.

Fig. 6. Frequency response of R(jω,∆)

4. SIMULATION RESULTS

Using a Tustin approximation, the H∞ controller is
now implemented into the highly representative simulator
UVA-Padova, with 11 virtual adult patients (possessing
various and representative physiological parameters). It
also includes a standard insulin pump as well as a standard
CGM sensor (Breton and Kovatchev, 2008). The scenario
consists of 3 announced meals: 60 g (of carbohydrate) at
7:00, 60 g, at 13:00 60 g and 60 g at 19:00. All meals have
a duration of 15 min. The feedforward consists of a 2 U in-
sulin bolus, delivered at the start of each meal (Steil et al.,
2011). A total of 550 simulations (50 for each patients) are
then run. The mean BG profile for all 550 simulations is
plotted on Fig. 7 along with min/max envelopes and stan-
dard deviation. The minimal envelope is mainly caused by
the patient N◦7. It means that this patient is most prone
to hypoglycemia risk, which is coherent with the analysis
performed in section 3.4.

The results obtained are also analysed by means of clinical
metrics, following the metrics advocated in (Battelino
et al., 2019). These clinical specifications are mainly based
on BG temporal distribution performance metrics, defined
in terms of the so called “Time above/in/below range
specification” metrics, in percentage, measured on one day.
Table 2 gives values of these metrics.

The obtained results of our simulation campaign are listed
in table 1. As it can be seen, no patient presents signs of
hypoglycemia and only two patients associated metrics for
hyperglycemia are over the recommended range: 1.2% over
for patient n◦5 and 8.5% over for patient n◦8. These results
validate to some extent the possibility of having a single
controller for a patient’s cohort.



Table 2. Time in range specification

Metric Specification

TAR250 (time above range > 250 mg/dL) < 5%
TAR180 (time above range 181− 250 mg/dL) < 25%
TIR70−180 (time in range 70− 180 mg/dL) > 70%
TBR69 (time below range 54− 69 mg/dL) < 4%
TBR54 (time below range < 54 mg/dL) < 1%

Fig. 7. Mean glucose profile for 550 simulations

5. CONCLUSION

Based on the H∞/µ theory, this paper proposes the de-
sign of a robust controller in order to control the blood
glucose profiles of type 1 Diabetes Mellitus patients. As
opposed to existing commercial solutions, the solution is
patient-independent and does not require either person-
alised tuning at feedback level or meal carbohydrate count-
ing. The controller performance is assessed in the high fi-
delity UVA/Padova simulator, showing the potential of the
proposed solution. Individualisation will be investigated
in future works at feed-forward (meal announcement) or
glucose target generation levels.
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