
Prediction of postprandial glucose
excursions in type 1 diabetes using
control-oriented process models

D. Adelberger ∗ F. Reiterer ∗∗ P. Schrangl ∗∗∗

Ch. Ringemann ∗∗∗∗ T. Huschto ∗∗∗∗ L. del Re ∗

∗ Institute for Design and Control of Mechatronical Systems, Johannes
Kepler University Linz, Altenberger Strasse 69, A-4040 Linz, Austria

(e-mail: daniel.adelberger@jku.at)
∗∗ Nemak Linz GmbH, A-4030 Linz, Austria

∗∗∗ Magna Powertrain Engineering Center Steyr GmbH & Co KG,
A-4300 St. Valentin, Austria

∗∗∗∗ Roche Diabetes Care GmbH, D-68305 Mannheim, Germany

Abstract: Reliable prediction of future blood glucose (BG) values is of high relevance for
diabetes patients, since it enables the use of predictive glucose alarms (warning the patient about
impending situations with dangerously low or high BG), as well as of model-based algorithms
for smart glucose control. Control-oriented graybox process models have proven very suitable for
such tasks, especially when identified on data from clinical trials under well-defined conditions.
The current paper analyzes how such models can also be reliably parametrized using outpatient
data of patients on multiple daily injection (MDI) therapy. A dedicated preprocessing algorithm
is presented to look for suitable (i.e. complete and sensible) data segments that allow for a
reliable system identification. The focus of the current paper is on the prediction of postprandial
glucose trajectories, more specifically on predictions made exactly at the time of meal ingestion.
This corresponds to a particularly challenging task, but one with high importance for the model-
based optimization of insulin doses. It is demonstrated that the identified process models are a
suitable choice for predicting such postprandial glucose excursions.
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1. INTRODUCTION

Patients with type 1 diabetes mellitus (T1DM) require in-
sulin injections in order to mitigate the long–term effects of
a chronically increased blood glucose (BG) level. However,
too much insulin leads to hypoglycemia which is a poten-
tially life threating situation. Managing BG by injecting
a suitable amount of insulin is a difficult task and a con-
siderable burden for patients with diabetes, especially seen
that there is a large day-to-day variability of BG dynamics
and a myriad of factors that influence BG. Therefore, the
design of smart control algorithms that help patients with
managing their BG has kept control engineers busy for
many years already. These research efforts have resulted
in the design of numerous algorithms for assisting patients
with the control of their glucose levels, e.g. by warning
patients about impeding hypoglycemia or hyperglycemia,
by giving insulin dosing advice via a decisions support
systems, or by providing closed-loop glucose control via an
artificial pancreas. Most of these algorithms rely at their
core on a mathematical model for the prediction of future
BG levels. A whole variety of models has been proposed for
this purpose. Typically these can be categorized either as
physiological models or data-based models. Seen that they
are far easier to parametrize/personalize, the vast majority
of publications on the topic uses data-based models for

this purpose, see Oviedo et al. (2017) for an overview. A
sub-class of these data-based prediction models that have
proven especially suitable for control-oriented tasks are
graybox process models. Over the years different process
model structures have been proposed for describing the
glucose response to carbohydrate intakes and bolus insulin
injections, see Percival et al. (2010); van Heusden et al.
(2011); Kirchsteiger et al. (2014); Cescon et al. (2014);
Tárńık et al. (2015); Toffanin et al. (2018). Such models
have been successfully applied for the identification of bo-
lus calculator settings as in Kirchsteiger and del Re (2014);
Reiterer et al. (2015a,b); Bock et al. (2015), closed loop
glucose control in an artificial pancreas as in Gondhalekar
et al. (2016); Boiroux et al. (2017) and the prediction of
impending hypoglycemia as in Toffanin et al. (2018). The
main advantages of process models are the straightforward
interpretation of the model parameters and the simple
parametrization (seen that the models are restricted to few
parameters). Model individualization strategies described
in the literature are either based on simple tuning rules
as in van Heusden et al. (2011); Boiroux et al. (2017);
Tárńık et al. (2015) or based on optimizing model param-
eters based on the data from suitable postprandial glucose
responses, either using high quality data from clinical trials
as in Percival et al. (2010); Kirchsteiger et al. (2014); Bock
et al. (2015); Cescon et al. (2014) or manually selected



data segments that are deemed suitable as in Toffanin
et al. (2018). The current paper explores the use of the
control-oriented process model proposed in Kirchsteiger
et al. (2014) for the short and medium-term prediction of
glucose values after meal intakes. Compared to previously
published works with a similar focus, the novelty of this
publication is the following:

• Models are identified from outpatient data of patients
on multiple daily injection (MDI) therapy recorded
under real-life conditions. Information about insulin
dosing and meal intakes are based solely on diary
entries of patients, which are often erroneous or missing.
A data preprocessing algorithm is proposed here to
automatically screen for suitable data segments which
allows for a reliable model identification even under such
challenging conditions.

• The paper analyzes the reliability of process models for
the prediction of future glucose values by analyzing their
performance as a function of the prediction horizon.

• Different options for describing the effect of the initial
state on the predicted postprandial glucose trajectory
are explored.

2. METHODOLOGY

2.1 The Kirchsteiger Model

A process model of the following structure is considered
in the current paper for describing the glucose response to
carbohydrate intakes, as well as to bolus insulin injections:

CGM(s) =
K1

(1 + sT1)2s
·D(s) +

K2

(1 + sT2)2s
· U(s) (1)

In this formula, CGM(s) describes the glucose level
recorded via a continuous glucose monitoring (CGM) sys-
tem, D(s) the carbohydrates of meal intakes and U(s)
the bolus insulin injections, all in the Laplace domain.
Other influencing inputs like basal insulin, stress, sports,
mixed meal composition etc. are not incorporated into this
model structure. The parameters in (1) have an easy to
grasp physiological interpretation: Whereas K1 describes
the effect of 1 gram of carbohydrates on glucose levels, K2

corresponds to the effect of 1 IU of bolus insulin (both
for t → ∞). Time constants T1 and T2 are proportional
to the response time to carbohydrate and insulin inputs.
Parameter K2 has the same interpretation as the insulin
sensitivity factor ISF, whereas the ratio K2/K1 tells how
many grams of carbs are compensated by 1 IU, just as
it is the case for the carbohydrate-to-insulin ratio CIR
in Advanced Carbohydrate Counting (ACC), see Reiterer
and Freckmann (2019). The process model structure used
here was first reported in Kirchsteiger et al. (2011) and
has already been applied extensively (and successfully) in
previous works, among others for the parametrization of
bolus calculator settings in ACC, see Kirchsteiger and del
Re (2014); Reiterer et al. (2015a,b).

2.2 Framework for the Identification of Model Parameters
and the Prediction of Future Glucose Values

Two different frameworks are considered for the identifi-
cation of model parameters of (1), as well as for the later-
on prediction of postprandial glucose responses. These

frameworks differ in how they model the effect of the initial
state on the predicted glucose trajectory. In both cases,
however, the core of the model identification corresponds
to the minimization of the following cost function:

J(θ) =

dtot∑
d=1

 kN (d)∑
k=k0(d)

f(yk, ŷk(θ))
2

 (2)

with

f(yk, ŷk(θ)) =

{
yk − ŷk(θ) if yk < 100 mg/dl

100 · yk−ŷk(θ)
yk

if yk ≥ 100 mg/dl
(3)

In this cost function yk corresponds to the measured
output, i.e. the CGM data, whereas ŷk is the model
output. Each data segment d (dtot in total) used in the
identification segment is characterized by a starting index
k0 and an end index kN . The model output ŷk is computed
using model parameters θ and an estimate of the initial
state x̂0. This initial state estimate corresponds to the
state of the system at the start of the identification
segment k0. For each data segment of a patient the same
parameter vector θ is used, representing the best average
patient-specific model parametrization.

Process Model combined with Kalman filter (KF-PM):

In the first setting a Kalman filter is used to estimate
the initial state. This initial state is then used in model
(1) together with the information about meal size and in-
jected bolus quantity to simulate the postprandial glucose
trajectory. However, in order not to create any bias in the
predicted glucose values, it is necessary to already consider
the Kalman filter when optimizing the model parameters.
For the system identification the Kalman filter starts with
its state estimation 6 hours before the starting point of
the identification data segment and computes estimates
for the state for each of those time points up to the start
of the identification segment. The last estimate of x̂ (just
at the start of the identification data segment) corresponds
to the initial state for the system identification. The model
inside the Kalman filter (derived from the process model
with parameters θ) is updated in every iteration step of
the optimization using the latest estimate of the model
parameters θ, i.e. the process model used for prediction
and the (same) process model used inside the Kalman filter
are optimized simultaneously. A new Kalman filter is thus
designed in each iteration step and is subsequently used
to compute the state estimates x̂(tk0) at each time tk0

based on input (d, u) and output (∆y = y − Gb) data up
to time tk0 (with Gb, the estimate of the patient’s basal
glucose level). Using the estimated state x̂(tk0) at time tk0

as initial condition, a simulation with the process model
k steps into the future can be computed (ysim,k(tk0)). A
prediction for time tk0 + kTS (with TS, the sample time)
can thus be calculated as:

ŷ(tk0 + kTS|tk0) = ysim,k(tk0) +Gb (4)

Hybrid Process and Autoregressive Model (AR-PM):

x̂0 is assumed to be 0 for the process model (no impact
of the initial state on the process model output), but the
effect of the initial state is captured by an autoregressive
(AR) model. The predicted glucose output of this hybrid
model corresponds to the sum of the process model pre-
diction and the prediction by the AR model. A population



mean AR model with parameter values identified from
data during the night period (i.e. without any influence
of meals) is used for this purpose. Let ŷAR(tk0 + kTS|tk0)
be the prediction of time tk0 + kTS given information up
to time tk0 . The combined model output for the predicted
glucose trajectory is then calculated according to the fol-
lowing equation:

ŷ(tk0
+ kTS|tk0

) = ysim,k(tk0
) + ŷAR(tk0

+ kTS|tk0
) (5)

where ysim,k(tk0
) is the output of the process model

simulated with the assumption of x̂(tk0
) = 0 as initial

condition.

2.3 Reference Prediction Models

Besides the process model (1), additional prediction mod-
els are used in order to facilitate the assessment of the
achieved prediction performance. The following prediction
models are used for this purpose:

• Zero Order Hold: The zero order hold (ZOH) model
computes the prediction ŷ at time t+ kTs based on the
CGM data y up to time t by keeping the latest available
value constant, i.e.

ŷ(t+ kTs) = y(t). (6)

• Global AR Model: A simple, second order global AR
model of the form

∆ŷAR(t+ kTs) = ak∆y(t) + bk∆y(t− TS) (7)

∆y(t) = y(t)−Gb (8)

ŷAR(t+ kTs) = ∆ŷAR(t+ kTs) +Gb (9)

is used (where Gb is again the patient-specific estimate
of the basal glucose level). The parameters (ak, bk) are
optimized using least squares (LS) optimization for each
prediction horizon k.

• Alternative Process Model Structure: To put the predic-
tion performance of model (1) into context, additionally,
an alternative process model structure without integra-
tor terms is analyzed:

CGM(s) =
K1

(1 + sT1)2
·D(s) +

K2

(1 + sT2)2
· U(s) (10)

This model structure has e.g. already been successfully
used in Boiroux et al. (2017). To facilitate the further
discussion, in the following model (1) will be referred to
as PM1, whereas the alternative process model structure
(10) is going to be called PM2. As for PM1, two
parameter sets of PM2 are identified for each patient,
using either a Kalman filter for estimating the initial
state at the start of a prediction (KF-PM2), or the
combination with a global AR model (AR-PM2).

2.4 Data Pre-Selection

To find suitable data segments for the identification of pro-
cess models (PM1 and PM2), a preprocessing procedure is
used that tries to evaluate the quality of the recorded data.
An algorithm checks for a multitude of possible flaws in
the data and marks the corresponding areas. The following
flaws in the data are automatically screened for:

• Double-entries: In case multiple entries with equal
amount of carbohydrates or insulin are recorded within
5 minutes in time, these are marked in the data as
suspicious.

• Unrealistically big carbohydrate and insulin inputs: Car-
bohydrate and bolus insulin intakes with a value bigger
than a specific threshold are marked as suspicious in
the data. The threshold is calculated as 1.5 times the
interquantile range above the 75% quantile of all carbo-
hydrate and insulin values of the specific patient.

• Unrealistic carbohydrate to insulin ratios: The base
for this check is an estimate for the expected bolus
insulin amount (BI) which is computed according to the
following formula from Walsh and Roberts (2013):

BIexpected =
CHO

CIR
+

∆G

ISF
(11)

with the following elements:
· Carbohydrate content of meal (CHO)
· Deviation of the CGM value from a nominal target
BG value
(∆G = CGM − BGtarget, with BGtarget set to 110
mg/dl)

The CIR and ISF values in (11) are the ones the patients
rely upon for computing their bolus insulin needs. The
data segment is marked as suspicious in case the actually
injected bolus insulin amount for a meal BI differs more
than 40% from the expected value BIexpected, i.e. if the
BI is outside the following bounds:

0.6 ·BIexpected < BI < 1.4 ·BIexpected (12)

• CGM rise without any meal input: In order to detect
an invalid CGM rise, i.e. a CGM rise without any meal
input (which is an indication of an incomplete dataset)
the following algorithm is used:
(1) Filter the original CGM time signal ycgm(t) using a

Savitzky-Golay-Filter (SGF) with filter parameters
d and w. This results in a filtered signal y(t).

(2) Detect all minima and maxima in the filtered sig-
nal y(t).

(3) For each rising segment (minimum until next max-
imum), consider the following steps:
(a) Consider the following points in time (see

Fig. 1):
· tmin: time where a local minimum occurs in
y(t)

· tmax: time where the next local maximum
occurs in y(t) after tmin

· t1: time where ẏ(t) has largest value in the
interval [tmin, tmax]

· t2: time where ÿ(t) has largest value in the
interval [tmin, tmax]

· tstart = tmin −∆T
· tend = t2 +∆T
· ∆y = y(tmax)− y(tmin)

(b) The carbohydrates input signal is denoted c(t)
(c) If the condition

∆y > ∆ymin ∧ ẏ(t1) > ẏmin ∧
tend∑

t=tstart

c(t) ≤ cmin (13)

is satisfied, the time interval [tmin, tmax] is con-
sidered an invalid rise in CGM and the data
segment is marked as suspicious.

Table 1 lists the parameters of this algorithm.

Besides the set of rules used to detect incomplete or erro-
neous data segments, additionally, a check is implemented
to identify suitable starting points for the model identifi-
cation. Such a valid starting point is a meal with at least



20 g of carbohydrates and with a simultaneous injection of
an appropriate amount of bolus insulin (as determined via
the checks described before). Data segments used for the
model identification commence with a valid starting point
and end with a data point that is marked as suspicious,
a hole in the CGM trace (longer than 30 minutes), the
next marker for a valid starting point, or after 2 hours
(whatever occurs first). Such data segments must be 30
minutes or longer in order to be considered for the process
model identification.

Table 1. Parameters of algorithm to detect
CGM rises w/o meal input.

Parameter Symbol Unit Value

SGF degree d 1 3
Window size of SGF w min 120
Rate-of-change threshold ẏmin mg/dl/min 0.75
Threshold for min. CGM rise ∆ymin mg/dl 30
Time shift ∆T min 30
Min. amount of carbs cmin g 0

Fig. 1. Illustration of algorithm used to detect invalid rises
in CGM data.

3. EXPERIMENTAL SETUP

3.1 Data

For the current work, data of 175 patients collected during
an 8 week outpatient clinical trial are used. All patients
had T1DM and were on MDI therapy. During the time of
the trial patients were equipped with a Dexcom G5 CGM
(sampling time Ts: 5 minutes) and kept an electronic diary
about their meal intakes (including timing and estimated
carbohydrate content), as well as about their injections
of basal and bolus insulin (timing and insulin amount).
Furthermore, information about CIR and ISF values used
by the patients to compute their bolus insulin needs have
been documented.

3.2 Model Identification

The data of each patient is split into half. Only the first 28
days of data are used for model identification, whereas the
remaining length of the dataset (typically 28 days of data
as well) are used for testing and validation of the identified
prediction models. Patient-specific process models PM1

Table 2. Constraints and initial guesses for
PM1 and PM2.

PM1 PM2

K1

(mg/dl/g)

lower bound 0.5 100
upper bound 10 6000
initial guess CIR/ISF 271.83 · ISF/CIR

T1

(min)

lower bound 10 20
upper bound 60 200
initial guess 29.5 100

K2

(mg/dl/IU)

lower bound −100 −80000
upper bound −10 −1300
initial guess −ISF −489.29 · ISF

T2

(min)

lower bound 25 50
upper bound 250 300
initial guess 56.7 180

and PM2 are identified for each patient using the proce-
dures outlined in Sec. 2.2. Preliminary test computations
revealed that prediction performance of process models
can be increased significantly by using a different set of
model parameters for different times of the day. Therefore,
separate model parameter sets are identified for breakfast,
lunch and dinner time. Breakfast models are identified
from data segments with a starting point between 5:30am
and 10:30am, lunch models from those with a starting time
between 10:30am and 2:30pm, and dinner models from
those with a starting time between 5:00pm and 9:00pm. In
order to obtain not only good prediction results, but also
sensible model parameters for PM1 and PM2, the values
of K1, T1, K2 and T2 are restricted in the optimization
to a physiologically meaningful range. The corresponding
parameter limits used for this purpose are summarized in
Table 2. Furthermore, the initial guess for the parameter
values as used in the optimization procedure can be found
in the same table. CIR and ISF in the table refer to the
values actually used by the patients during the trial to
compute their bolus insulin needs. For the fine tuning of
the Kalman filters for KF-PM1 and KF-PM2 matrices
Q and R have to be chosen. For this purpose diagonal
matrices are used with diagonal entries 1010 (R, both
settings), 30 (Q for KF-PM1) and 3 ·106 (Q for KF-PM2),
respectively. Furthermore, for computing predictions with
PM1 and PM2, as well as with the global AR model an
estimate of the basal glucose level Gb is required. Here, a
patient-specific estimate is computed as the mean CGM
value of the first 28 days of data of each patient.

3.3 Model Validation and Testing

From the 28 days of the identification dataset 12 sets of
patient-specific process model parameters are identified
(KF-PM1, KF-PM2, AR-PM1 and AR-PM2, each with
parameters identified from breakfast, lunch and dinner
data), as well as a second order global AR model from
the combined dataset of all patients. These identified
models are subsequently tested on the remaining data of
each patient. The testing is restricted to the prediction of
postprandial glucose excursions, with the prediction made
at the time of the meal ingestion. Only those postprandial
data segments are considered that fulfill the quality criteria
specified in Sec. 2.4. Results are evaluated for breakfast,
lunch and dinner events separately. For the process models
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the predicted glucose trajectories are computed using the
set of model parameters identified for the corresponding
meal type. For each meal event considered in the validation
part of the data the postprandial glucose trajectory is
evaluated up to the next system input, up to the detection
of an invalid CGM rise (as described in Sec. 2.4) or up
to two hours after the meal event (whatever occurs first).
For the assessment of the considered prediction models the
performance indicator P15/15 is calculated. For a specific
patient and prediction horizon P15/15 is computed as
follows:

pk =


1 if

yk ≤ 100mg/dl and ŷk ≤ 100mg/dl
and |yk − ŷk| ≤ 15mg/dl

1 if
(yk > 100mg/dl or ŷk > 100mg/dl)
and 0.85yk ≤ ŷk ≤ 1.15yk

0 otherwise

(14)

P15/15 =
100

N

N∑
k=1

pk (15)

with yk the measured CGM value, ŷk the corresponding
predicted glucose value and N the total number of points.
P15/15 corresponds to the percentage of predicted glucose
points within±15% of the measured CGM value (or within
±15 mg/dl below 100 mg/dl).

4. PREDICTION RESULTS AND DISCUSSION

An example for predicted glucose trajectories for the PM1
and a comparison with the corresponding postprandial
CGM measurements from the validation section of the
clinical data can be seen in Fig. 2. The prediction obtained
with setting KF-PM1 is shown in blue, whereas the one
for setting AR-PM1 is displayed in red. The bottom panel
shows the carbohydrate (in magenta) and bolus insulin (in
green) intakes for the considered meal event. The trajec-
tory for KF-PM1 matches pretty well with the CGM data,
whereas there are some discrepancies for setting AR-PM1,
see Fig. 2. In this case the predicted trajectory of AR-PM1
is outside the boundaries of P15/15 for most of the points. It
should be noted though that the postprandial excursion for
the meal event depicted in this plot is especially difficult
to predict, seen that there is some inflection in the CGM
data just around the time of the meal intake. A summary
of the overall performance of the analyzed process models,
as well as of the chosen reference prediction models can
be seen in Fig. 3. In the three subplots the median P15/15

Table 3. Median P15/15 results of considered
prediction models. The highest values in the

respective category are displayed in bold.

KF AR
ZOH

PM1 PM2 PM1 PM2 Global

b
re
a
k
fa
st 45 min 57.1 50.0 53.9 50.0 50.0 43.3

60 min 45.5 40.0 42.9 36.4 33.3 25.7

90 min 33.3 31.3 33.3 28.6 27.9 25.0

lu
n
ch

45 min 44.4 43.3 47.9 40.0 38.0 33.3

60 min 40.0 33.3 35.7 33.3 33.3 27.3

90 min 25.0 25.0 30.8 27.3 25.0 21.4

d
in
n
er

45 min 50.0 43.3 50.0 50.0 42.9 48.1

60 min 33.3 36.4 40.0 35.0 37.8 33.3

90 min 25.8 26.7 28.6 25.8 33.3 25.0

of all models (median over all 175 patients) is shown as a
function of the prediction horizon for breakfast, lunch and
dinner separately. Furthermore, for easier analysis, Table 3
lists the median performance of the analyzed models for
three specific prediction horizons. It can be seen from the
results that the main advantage of the analyzed process
models is for medium prediction horizons between 30 and
90 minutes. It is also interesting to see that the process
model performance is very different for the three analyzed
meal types. By far the biggest advantage of the process
models over simpler prediction models can be achieved for
the breakfast events. For lunch there is only a relatively
small performance gain for medium prediction horizons.
For dinner events on the other hand no real advantage of
the analyzed process models can be achieved as compared
to the simple global AR model. There are several expla-
nations for this observation. First of all, mixed meal com-
position at breakfast tends to be the least variable across
days, with many people eating the same food items for
breakfast every day. Secondly, because of their high con-
tribution of fast absorbing carbohydrates, breakfasts tend
to give the most pronounced postprandial peaks which
is advantageous at the model identification step. Thirdly,
before breakfast the system’s initial state is the closest to
basal, which makes it easier to perform a prediction of
the postprandial glucose trajectory. Comparing the per-
formance of PM1 and PM2, results tend to be somewhat
better for PM1. This might be surprising at first, seen that
the integrating behavior of PM1 is strictly speaking not
physiological. However, for the analyzed prediction hori-
zons up to 2 hours this effect of PM1 is not really relevant
for its prediction outcomes. Interestingly, the performance
of PM2 is especially low for very short prediction horizons.
Among the two analyzed options for predicting the impact
of the initial state, the use of a Kalman filter tends to give
slightly better outcomes than the hybrid process and AR
modeling approach, but differences are small.

5. CONCLUSIONS AND OUTLOOK

The current paper analyzes the identification of control-
oriented graybox process models and their application
for the prediction of postprandial glucose trajectories.
More specifically, the focus is on predictions made just
at the time of the meal ingestion. Two different process
model structures are considered for this purpose, the well-
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Fig. 3. Median performance (P15/15) of considered prediction models for different meal times.

known Kirchsteiger model PM1, as well as an alternative
process model without integrating behavior PM2. The
model identification is done using outpatient data from
T1D patients on MDI therapy, relying on manual diary
entries as information about the system inputs, which
leads to a more realistic data quality compared to studies
under well-controlled clinical conditions. In order to allow
for a reliable model identification from such error-prone
and incomplete data, a dedicated preprocessing algorithm
is proposed here to screen the data for segments that look
complete and sensible and are therefore suitable for the
identification task. Analyzing the prediction performance
of the identified process models and comparing it to that
of simple reference prediction models (ZOH and second
order AR), it is found that the considered process models
perform especially well for breakfast events, and less so
for lunch and dinner. Among the two analyzed process
models, PM1 performs better at predicting postprandial
glucose values than PM2.
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