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Abstract: We propose a rapid nonovershooting tracking controller for the continuous infusion
of anesthetics and analgesics to prevent overdosing and other harmful side effects on patients.
The controller utilizes a state feedback control design methodology for multi-input multi-
output systems to achieve a closed-loop eigenstructure that yields a nonovershooting transient
response. The method is combined with a global optimization method to achieve a rapid
nonovershooting response. The controller uses an extended Kalman filter to estimate system
states from measurable outputs, and integral control is added to achieve robust tracking. The
performance of the method is simulated on 20 patient models in two groups, and the results
are compared against another recent study from the biomedical control literature.
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1 Introduction

Critically ill patients in the intensive care units (ICUs)
usually require fine-tuning and long-term infusion of anes-
thetics and analgesics to reduce anxiety, delusions, relieve
pain caused by intubation and extubation, increase pa-
tient tolerance after tracheal intubation and reduce pa-
tient ventilator asynchrony (Padmanabhan et al., 2019).
However, when anesthetics and analgesics are injected
simultaneously, the mechanism of action is complex, inter-
laced, and interacted (Ionescu et al., 2014). Excessive use
of anesthetics and analgesics has many side effects, such as
nausea, emesis, hypotension, and may even threaten the
life of the patient (Padmanabhan et al., 2017; van den
Berg et al., 2017). Under-dosing of anesthetics and anal-
gesics may inadequately suppress pain sensations, causing
patient distress. A reliable controller should be designed
for ICU patients, which should also be robust in the
condition of patient’s parameter variability.

A patient simulator platform designed by (Ionescu et al.,
2021) combines interdisciplinary expertise in medicine,
clinical practice, and systems engineering collected over
the past few decades. It provides accessible tools for
the researchers, allowing system design, evaluation, and
comparison of various control algorithms to achieve multi-
drug delivery goals in anesthesia. The combination of
control engineering knowledge and clinical methods have
been intensively studied to improve the drug delivery pro-
cess as it has many benefits for patient safety (Ghita et al.,
2020). The control of anesthesia delivery can be defined
as a tracking control problem, and the controller should
make the closed-loop response achieve relatively small
overshoot, quickly reach the tracking target, maintain the
target for a long time, and be robust during the process
of injecting anesthetics.

(Ionescu et al., 2014) and (Padula et al., 2015) intro-
duced proportional-integral-derivative (PID) controller
for propofol infusion, achieved successfully rapid tracking
by the tuning the PID parameters. However, the PID
control may become aggressive or even unstable when
there are strong interactions from various input vari-
ables (Ionescu et al., 2014). Moreover, their responses all
showed overshoot in the transient response. Also, Model
Predictive Control in (Ionescu et al., 2011; Sawaguchi
et al., 2008; Ionescu et al., 2008), and reinforcement
learning-based control in (Padmanabhan et al., 2017;
Moore et al., 2014) have been mentioned in the past
several years,

In this paper we consider multiple-input multiple-output
(MIMO) control strategy using state feedback to achieve
the optimal drug delivery. The non-overshooting method
was discussed for this biomedical problem by (Padman-
abhan et al., 2019), who used a unified method for the
design of nonovershooting tracking controllers which is
proposed by (Schmid and Ntogramatzidis, 2010). How-
ever, the tracking convergence speed is relatively slow
through this method. Decreasing the response time might
help to reduce the risk of awareness, and also leaving
anesthesiologists to be more attentive to the surgical
procedure and the assessment of blood loss, etc (Ionescu
et al., 2021). So, in this paper, we will introduce a way to
design a fast nonovershooting controller by combining the
nonovershooting control design methods of (Schmid and
Ntogramatzidis, 2010) with the particle swarm optimiza-
tion (PSO) algorithm (Kennedy and Eberhart, 1995).

2 Drug disposition model

Since the patient’s pharmacokinetics will change accord-
ing to their physiological condition, we use Schneider’s



drug treatment model, which depends on patient’s phys-
ical characteristics (Ionescu et al., 2011). It is one of the
key recommended models in the field of clinical medicine,
which is currently used to promote target-controlled infu-
sions. The mass balance equation used to simulate drug
delivery between compartments are given by (Padman-
abhan et al., 2019), and the parameters are given in
(Padmanabhan et al. 2019, Table 1). Note that we use
lbm = 1.07∗weight−148∗(weight2/height2), with weight
(kilogram) and height (centimeter).

The measured value of the bispectral index (BIS) index
is in the range of 0 to 100, which represents the EEG
signal. The net sedative effect when an anesthetic is used
with an analgesic and a synergistic interaction is given by
(Padmanabhan et al., 2019):

BIS(t) = BIS0 ×

1−
(U

S(t)+UA(t)
U50(φ(t))

)γ(φ(t))

1 + (U
S(t)+UA(t)
U50(φ(t))

)γ(φ(t))

 (1)

where φ(t) is defined as US(t)
US(t)+UA(t)

. γ(φ(t)), t ≥ 0 denote

the steepness of the concentration-response relation at ra-
tio φ(t). The number of units associated with half of max-
imum effect at ratio φ(t) is demonstrated by U50(φ(t)).
BIS0 represents the BIS value of fully conscious patient.
US(t) and UA(t), t ≥ 0, denote the normalized drug
concentrations of the sedative and analgesic drugs, respec-
tively. They can be represented as:

US(t) =
cSeff (t)

CS50
, UA(t) =

cAeff (t)

CA50
(2)

where CS50 and CA50 denote the drug concentrations of
the sedative and analgesic that cause 50% drug effects,
respectively. cSeff (t) and cAeff (t) denote the effect-site con-
centrations of the sedative and analgesic drug respectively.

Remifentanil can relieve pain and relax muscles and the
percentage of muscle relaxation indicates the amount of
remifentanil in the blood. The relationship between the
electromyogram index (EMG) and remifentanil concen-
tration is given by (Ionescu et al., 2014):

EMG(t) =
100× CAeff (t)

3.4× CAeff (t) + 0.0063
(3)

The value of the EMG(t), t ≥ 0, represents the percent-
age of muscle relaxation and varies from 0% to 100%.
Combine equation (1)-(3) to get the state-space model:

ẋ(t) =Ax(t) +Bu(t), x(0) = x0, t ≥ 0 (4)

y(t) = [BIS(t) EMG(t)]T (5)

where A ∈ R8×8 is a compartmental matrix, B ∈ R8×2 is
an input matrix, x(t) ∈ R8×1, t ≥ 0, is the state vector,
u(t) = [uS(t), uA(t)]T is the control input, and y(t) is the
system measurement. The initial values of the state vector
x0 is zero, as no prior drug infusion is assumed.

Using linear regression method to linearize the equation
(1) and (3) yields the linear output model (Padmanabhan
et al., 2019):

y(t) =

[
BIS(t)
EMG(t)

]
=

[
m1 m2

0 m3

] [
CSeff (t)

CAeff (t)

]
+ d (6)

where m1 = −1.3263 × 104, m2 = −1.1910 × 106, m3 =
1.5561 × 104. d = [c1, c2]T , c1 = 84.98, and c2 = 0.0068.

To achieve a robust response, the system is augmented
with integral action:

Aa =

[
A 0
−C 0

]
, Ba =

[
B
0

]
, Ca = [C 0 ] (7)

We note the augmented system has stable invariant zeroes
of z = [−0.1986,−0.3513,−0.0687,−0.0107].

In this paper, we simulated two sets of models with 10
patients each. For case 1, pharmacodynamic parameters
(Padmanabhan et al. 2019, Table 2) are the same for all
of the 10 patients, while those parameters (Padmanabhan
et al. 2019, Table 4) are different in case 2 due to the
pharmacokinetic and pharmacodynamic variability from
the nominal model in the real world. So, case 2 is used to
analyze the robustness of the controller and performance
analysis of the system.

3 Controller design and optimization methods

In this section we briefly describe the main results from
(Schmid and Ntogramatzidis, 2010) to obtain a state
feedback law for a nonovershooting response. We also
describe the optimisation method that will be used to
obtain a rapidly converging nonovershooting response.

3.1 Nonovershooting tracking control

(Schmid and Ntogramatzidis, 2010) considered LTI sys-
tems is state space form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0
y(t) = Cx(t) +Du(t)

(8)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, rank(B) = m,
rank(C) = p, with m ≥ p. They designed linear state
feedback control laws such that, from a given initial
condition x(0), the output y would track a constant step
reference r ∈ Rp with zero steady-state error, and without
overshoot in all output components. Two vectors xss ∈ Rn

and uss ∈ Rm exist that satisfy

0 =Axss +B uss (9)

r=C xss +Duss (10)

for any r ∈ Rp. Application of the control input

u(t) = F (x(t)− xss) + uss, t ≥ 0 (11)

and employing the change of variable ξ := x− xss, yields
the closed loop homogeneous system

ξ̇(t) = (A+B F ) ξ(t), ξ(0) = x0 − xss, (12)

y(t) = (C +DF ) ξ(t) + r. (13)

The main idea of their design method was to employ
the classic result on eigenstructure assignment given in
(Moore, 1976) to obtain a feedback matrix F such that
the output y(t) was related to only a small number of the
closed-loop systems’s modes (poles). A key result is the
following eigenstructure lemma, which is an adaptation of
Moore’s algorithm.

Lemma 3.1. (Schmid and Ntogramatzidis, 2010) Let L =
{λ1, . . . , λn} be a self-conjugate set of n distinct complex



numbers. Let S = {s1, . . . , sn} be a set of n (not nec-
essarily distinct) vectors in Rp. Assume that, for each
i ∈ {1, . . . , n}, the matrix equation[

A− λiI B
C D

] [
vi
wi

]
=

[
0
si

]
(14)

has solutions sets V = {v1, . . . , vn} ⊂ Cn and W =
{w1, . . . , wn} ⊂ Cm. Then, provided V is linearly inde-
pendent, a unique real feedback matrix F exists such that,
for all i ∈ {1, . . . , n},

(A+B F ) vi = λi vi, (15)

(C +DF ) vi = si. (16)

(Schmid and Ntogramatzidis, 2010) gave several methods
to design a nonovershooting state feedback algorithms, de-
pending up on the number of control inputs m, controlled
outputs p and the number of stable (left-hand complex
plane) invariant zeros. Below we particularise these results
to the case D = 0, n = 10, m = p = 2, and the system
has 4 stable invariant zeroes, since these are the system
parameters that are applicable to the augmented drug
infusion model, with state matrices given in (7), that we
consider in this paper.

Let {z1, z2, . . . , z4} be the stable invariant zeros of the
drug infusion system, and let L = {λ1, . . . , λ10} denote
the set of distinct stable closed loop eigenvalues of Aa +
Ba F to be chosen. Then, we choose λi = zi for i ∈
{1, . . . , 4}, and for i ∈ {5 . . . , 10}, the λi may be freely
chosen to be any real distinct stable modes not coincident
with the invariant zeros. Let {e1, e2} be the canonical
basis of R2, and let S = {s1, . . . s10} ⊂ R2 be such that

si =

{
0 for i ∈ {1, . . . , 4};
e1 for i = {5, 6, 7};
e2 for i = {8, 9, 10}.

(17)

Applying Lemma 3.1 to these L and S, we obtain sets
V and W. Provided V is linearly independent, applying
Moore’s algorithm to V and W yields F such that the
vectors in V satisfy

(Aa +Ba F ) vi = λi vi, i ∈ {1, . . . , n}, (18)

Ca vi =

{
0 i ∈ {1, . . . , 4},
e1 i ∈ {5, 6, 7}
e2 i ∈ {8, 9, 10}.

(19)

The closed-loop system in ξ-coordinates is

ξ̇(t) = (Aa +BaF )ξ(t)
y(t) = Caξ(t) + r

(20)

We let ξ0 = x0 − xss and define the coordinate vector
α = V −1ξ(0) = (α1, α2, ..., α10). Then the tracking error
ε(t) = r − y(t) is given by

ε(t) =

[
α5 e

λ5t + α6 e
λ6t + α7 e

λ7t

α8 e
λ8t + α9 e

λ9t + α10 e
λ10t

]
. (21)

Thus the eigenstructure assignment methods have en-
sured that both output components of ε contain only
three of the system’s ten closed-loop modes. (Schmid
and Ntogramatzidis, 2010) gave necessary and sufficient
conditions for the sum of three real exponential func-
tions to converge to zero without changing sign, and
this corresponds to the system output y(t) tracking its

target reference r without overshoot in both components.
The tests are computationally straightforward and do not
require simulating the system response.

Thus the nonovershooting design method of (Schmid and
Ntogramatzidis, 2010) is an iterative procedure, involving
the selection of candidate sets of closed-loop poles L,
constructing V, W and F , computing the coordinate
vector α and then testing the resulting error term (21)
for overshoot. The authors claimed that, provided the
components of errors terms contained at most three real
exponentials, the search for nonovershooting poles was
likely to be successful.

3.2 Particle swarm optimization algorithm

The particle swarm optimization method (Kennedy and
Eberhart, 1995) seeks to optimise an objective function
within a specified search space by randomly commencing
with a population of candidate solutions, described as
the initial particle positions. These particles are then
iteratively moved within the search space according to
the particle’s position, velocity and corresponding cost.
Each particle is influenced by its local best-known position
and the global best-known position. Based on this scheme,
particles move towards the global optimum position. The
advantages of the PSO method are its ease of application,
and its applicability to non-smooth objective functions for
which gradient search methods may not be applicable.

We now briefly describe the algorithm. Suppose that there
are N particles at position:

Pi(t) = position defined in the problem (22)

where i = 1, 2, ..., N , the initial particles are uniformly
randomly distributed in the search space. And the cost
function for each particle is:

f(Pi) = objective defined in the problem (23)

At each iteration the position is updated by:

Pi(t+ 1) = Pi(t) + vi(t+ 1), i = 1, 2, ..., N (24)

Where t is the iteration number, vi(t + 1) is the velocity
of each particles and is updated by (Mahdizadeh and
Schmid, 2015):

vi(t+ 1) = wi(t)vi(t) + ci(t)r1i(t)[Pi,Best(t)
−Pi(t)] + si(t)r2i(t)[PBest(t)− Pi(t)] (25)

where:

• Each particle keeps a record of it’s cost f(Pi) for each
iteration, the best value for each particle is defined
as:

fi,best(t) := min[f(Pi(τ)), 0 ≤ τ ≤ t] (26)

The corresponding position is:

Pi,best(t) := arg min[f(Pi(τ)), 0 ≤ τ ≤ t] (27)

• So the global best value and the corresponding posi-
tion is:

fbest(t) := min[fi,best(t), i = 1, 2, ..., N ] (28)

Pbest(t) := arg min[fi,best(t), i = 1, 2, ..., N ] (29)
• 0 ≤ wi(t) ≤ 1 is the inertial bias, it determines

the particle’s tendency to maintain their direction
of motion. Here define:

wi =

{
w0 > 0, if f(Pi(t)) < fi,best(t− 1)

0, otherwise
(30)

to make each particle reaches a better position.



• 0 < ci(t) < 2 is the cognitive bias while 0 < si(t) <
2 is the social bias, r1i(t) and r2i(t) are random
numbers generated from uniform distribution for
each particle’s velocity update.

The algorithm continues until a stopping condition is
reached, which may be a maximum number of iterations
or computation time, or else when the improvements in
the fbest value have been less than a certain threshold
value for a specified number of iterations.

Applying PSO this to the nonovershooting problem, a
set of candidate closed loop poles L represents a particle
position Pi. To achieve a rapid nonovershooting response,
we use the Integrated Absolute Error (IAE) as the cost
function for PSO:

f(Pi) = IAE =

∫
(|BIS(t)−BISREF |+

k |EMG(t)− EMGREF |) dt
(31)

Where k is weighting parameter for the two outputs, with
the tracking target BISREF = 60, and EMGREF = 29.
To let the two outputs have the same weight, we choose
k = 40/29. The other coefficients mentioned earlier about
PSO are not unique, and here we choose N = 300, w0 =
0.1, ci = 1.9, si = 1.5.

To realize a nonovershooting response, we use the
nonovershooting design methods of (Schmid and Ntogra-
matzidis, 2010) in the initialization phase and the updat-
ing phase. Thus the particle position is only updated at
each iteration if the new particle position corresponds to
a nonovershooting set of closed-loop poles. Additionally,
the range of effect-site concentrations is constrained by
(Padmanabhan et al., 2019):

cSeff ∈ [0, 30]ug/ml, cAeff ∈ [0, 25]ng/ml (32)

Where cSeff and cAeff are also system states. If any of these
two values exceed this limit, we also do not update the
particle’s position.

Under the simulation sampling time Ts = 0.001 minutes,
take the output value of the system simulation running
for 30 minutes, the cost function is transformed into:

f(Pi) =

30/Ts∑
n=0

(|BIS(nTs)−BISREF |

+k |EMG(nTs)− EMGREF |)
(33)

Set the optimization time to 5 seconds of computation
time, and using the state matrices corresponding to pa-
tient 1, the optimal pole locations were found to be:

L1 = {λ1, . . . , λ10}
= {−0.1986,−0.3513,−0.0687,−0.0107, −1.1718,

−1.2542, −1.4121, −2.0555, −1.9008, −1.4564}

with the corresponding feedback gain:

F =

[
−2.293 −0.2852 −0.1958 −7.353 149.8
−0.0000 −0.0000 0.0000 −0.0000 −4.047

· · ·
]

· · · −0.000 −0.000 790.3 −0.000343 −0.072
−0.3585 −0.0132 −15.09 −0.000 0.00076

]

Lastly, the feedback control law (11) is combined with the
Kalman filter proposed by (Padmanabhan et al., 2019) to
estimate the non-measured system states.

Fig. 1. Drug concentrations in the effect-site for the 10
patients (Case 1)

Fig. 2. Control inputs for the 10 patients (Case 1)

4 Simulation Results

Although the controller design is based on the approx-
imated linear model given by equation (6), for simula-
tion purposes we use the original nonlinear model given
by equation (1) and (3). We will compare the transient
performance against that given in (Padmanabhan et al.,
2019).

Case 1 (Figure 1-3) shows that the responses and effect-
site concentrations are strictly monotonic, and they are
the same for all 10 patients since the pharmacodynamic
parameters are assumed to be the same for the 10 pa-
tients. Besides, the closed loop poles are chosen to be
the same, and the feedback gain is calculated separately
based on each model. However, the control input are dif-
ferent because of the difference in the patient physiological
features. And the output response can reach stability
in about 5 minutes. Note that Case 1 is unrealistic as



Fig. 3. Drug responses for the 10 patients (Case 1)

pharmacodynamic parameters cannot be the same for all
patients in real life, and we simulate this situation to test
whether the response can achieve strict nonovershooting
in the case of an exact match of the model.

Case 2 (Figure 4-6) is to analyze the robustness of
controller. Here we use the controller and the estimator
derived from the model of Patient 1 to control the patients
with different pharmacokinetic and pharmacodynamic
parameters from Case 2. Note that set the control input
u(t) = max{0, u(t)} to ensure that the infusion rates
are non-negative. Finally, the system responses remain
similar even with significantly different pharmacokinetic
and pharmacodynamic parameters. This demonstrates
the robustness of the proposed rapid nonovershooting
controller

Fig. 4. Drug concentrations in the effect-site for the 10
patients (Case 2)

We use the median performance error (MDPE), median
absolute performance error (MDAPE), root mean square
error (RMSE), interquartile range (IQ), minimum and
maximum values of the controlled variable (min-max),
induction duration (ID), and percentage overshoot (OS)
to quantify the performance of the proposed control

Fig. 5. Control inputs for the 10 patients (Case 2)

Fig. 6. Drug responses for the 10 patients (Case 2)

strategy (Padmanabhan et al., 2019; Moore et al., 2014).
The instantaneous performance error (PE) is defined as:

PEi(j) =
Measured V aluei(j)− Target V alue

Target V alue
∗ 100

where i ∈ {11, 12, .., 20} denotes the ith patient. j =
1, ..., N , N is the data set for each patient. The MDPE,
MDAPE, and RMSE can be calculated as:

MDPEi = median(PEi(j)), j = 1, 2, ..., N (34)

MDAPEi = median(|PEi(j)|), j = 1, 2, ..., N (35)

RMSEi =

√∑N
j=1(MeasuredV aluei(j)− Target)2

N

Induction phase duration (ID) is defined as the time from
the start of administration until the drug’s effect decreases
and stays within the target value for 30 seconds. And the
percentage overshoot (OS) is defined as:

OSBIS,i = maxj

(
BIStarget −BISi(j)
BIS0 −BIStarget

)
×100, j = 1, 2, ..., N

(36)



Table 1. Performance metrics for controlled variables BIS and EMG

Performance metrics BIS [(Padmanabhan et al., 2019)] EMG [(Padmanabhan et al., 2019)]

MDPE[%] 7.9× 10−4 ± 1.9× 10−3 [-0.0090 ± 0.0085] −2.5× 10−4 ± 7.5× 10−4 [0.0027 ± 0.0329]
MDAPE[%] 1.5× 10−3 ± 1.2× 10−3 [2.817 ± 0.48] 9.4× 10−4 ± 8.2× 10−3 [7.87 ± 0.48]
Min-Max 59.43235− 60.00018 [58.95 − 63.12] 29.00000− 29.4737 [25.99 − 29.22]

IR 0.00297 [0.029] 0.00000881 [0.0001]
RMSE 4.95± 0.393 [4.91 ± 0.48] 0.04028± 0.001327 [0.050 ± 0.0006]
ID[min] 1.90± 0.22 [4 ± 0.6] 3.04± 0.14 [9.3 ± 1.2]
OS[%] 0− 1.419 [0 − 2.625] 0.000009407− 1.633 [0 − 0.75]

OSEMG,i = maxj

(
EMGi(j)− EMGtarget

EMGtarget

)
×100, j = 1, 2, ..., N

(37)

Table 1 shows the performance metrics compared with
nonovershooting design by (Padmanabhan et al., 2019),
and all of the 10 patients are within the acceptable
performance range (Ionescu et al., 2014; Padmanabhan
et al., 2019; Moore et al., 2014).

5 Conclusion

In this paper, we have proposed a state feedback controller
design method to obtain a rapid nonovershooting tracking
response for the drug disposition model, with the aim of
minimizing the risk of overdose and underdose to improve
patient safety. This design method can be applied to the
simultaneous injection of multiple drugs, while target-
ing different types of patients. Additionally, the design
method can be adjusted to modify the balance between
the convergence of the BIS response and the EMG re-
sponse, by adjusting the parameter k in the IAE index
(31). Our simulation study showed that by augmenting
the nonovershooting drug infusion method introduced in
(Padmanabhan et al., 2019) with PSO optimization, we
were able to replicate the nonovershooting performance
and also achieve significantly more rapid convergence to
the desired drug infusion levels.
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