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Abstract: In open-heart surgery, temperature changes may severely damage organ tissues,
therefore a better knowledge of thermal transient effects is required to improve temperature
control. Heat transfer in a biological context is usually treated by means of empirical rela-
tionships or simple resistance models. In some cases, fairly simplified models only involving
thermal resistance R and a heat capacity C are used. More advanced models which may be
accurate enough tend to rely on heavy finite element computations. An intermediate model
is sought to more accurately describe transient effects. By combining the well-known Pennes’
bio-heat equation combined to a thermal two-port network, a circuit model is proposed to
take into account thermal transients in a perfused tissue. A larger frequency band can be
taken into account for such an approach. The proposed models may also consider the effect
of blood perfusion on the temperature transients, as well as blood temperature fluctuations
(as in extracorporeal circulation, for example) and metabolic heat generation. For a simple
1D scenario, sensitivities to different heat or temperature inputs are compared. The obtained
impedance expressions are also analyzed for different branch levels of the lung.

Keywords: Heat equation, bio-heat equation, Pennes equation, blood perfusion, two-port
network, fractional calculus, fractional system, fractional order model

1. INTRODUCTION

In medicine, temperature fluctuations have a fairly narrow
variation window as even moderate temperature changes
may severely damage tissues. In normal conditions, the
organs of a human being remain pretty close to the
body’s core temperature, usually taken as 37◦C. However,
in open-heart surgery, the organs are exposed to the
ambiant air. Heat losses occur and the exposed organ
temperature decreases. Often, thermal pads and artificial
warming of the perfused tissue are applied to compensate
for the heat losses. This technique being empirical, a
better knowledge of thermal transient effects is required
to improve temperature control for such scenarios.

Lungs are of particular interest for surgeons, as extracor-
poreal circulation (ECC) is normally mandatory for car-
diac surgery. Under such conditions, lungs are exposed to
harsh conditions and may suffer irreversible damages (see
Badenes et al. (2015)). Research regarding lung protection
have been carried out during such procedures (see Luo
et al. (2017)). Controlling tissue temperature plays a cru-
cial role in surgery scenarios and precise hypothermia (see
Giesinger and McNamara (2018)) will protect the lungs
by lowering its metabolic rate. A better understanding
of temperature transients in lungs may lead to a better

control of thermal protection during ECC. Lungs have
been modelled by taking multiple approaches. A bifur-
cating flow model (see Kuwahara et al. (2009)) proved
that total lung levels (23) are an optimal point for airway
resistance. An equivalent mechanical impedance approach
may be simple enough to be identified in an experiment.
This approach was explored in Ionescu et al. (2014), where
lung fractality were introduced by using fractional-order
operators. It can be shown that such models may reveal
a particular illness, as lung geometric anomalies heavily
change its mechanical impedance (see Copot et al. (2017)).
A black-box fractional-order model based on the Havriliak-
Negami function was also used in experiments to analyze
effects of ECC on lung temperature distribution (Victor
et al. (2020)). A powerful tool to analyze heat transfer is
the use of thermal two-port networks (see Maillet et al.

(2000)). By using the heat flow, Q̇, and temperature,
T , as an analogy to current and voltage, an accurate
circuit model may be obtained by starting with the heat
equation. The thermal system is then represented as a T
circuit with series impedance Z1(s) and Z2(s) as well as
a shunt impedance Z3(s) (see figure 2). Note that these
impedances expressed in the Laplace domain are complex.



The thermal diffusion on a isolated semi-infinite rod is
proven to have a thermal impedance in high frequency
equivalent to a half-order integrator (Malti et al. (2009)):

Zthermal(s) =
T (s)

φ(s)
=

K√
s
. (1)

This result lead to the use of fractance elements (see
Krishna (2011) and Nakagawa and Sorimachi (1992)) for
thermal circuit modeling. It can be found in the literature
that such elements may be used to model highly irregular
systems, such as porous films in an electrochemical context
(Das et al. (2009)), intestine tissue (Elwakil (2010)), and
elasticity of cardiac tissue (Magin and Ovadia (2006))
which proves the interest of fractional order models for
diffusive phenomena as well as complex geometries.

In living tissue, additional phenomena are not taken into
account in the classic heat equation. Indeed, blood circu-
lation allows nutrient and gas exchanges to allow organic
functionalities, but this flow also acts as a natural thermal
regulator. Also, cell breathing and internal processes re-
lated to metabolism may also generate heat. Pennes (1948)
developed a bio-heat equation to take into account such
phenomena by completing the heat equation as:

ρc
∂T

∂t
= k∇2T + ρbcbωb(Ta − T ) + qm + qext (2)

where Ta is the arterial temperature, ρbcbωb(Ta−T ) is the
perfusion term, qm is the metabolic heat generation and
qext is an external heat source.

Pennes equation remains largely used in the medical
community: for global modeling of the human body (Fiala
et al. (1999)), for modeling a human eye with radiative
heat loss (Ooi et al. (2007)), for modeling the temperature
transient in human skin (see Ratovoson et al. (2010) and
Strakowska et al. (2015)), etc.

The main contribution of the present work is to provide an
accurate circuit model from the bio-heat equation by ap-
plying the thermal two-port network formalism.Moreover,
the impedances are expressed in all branch levels of the
lungs. An analysis of the resulting impedance expressions
is provided for frequency and perfusion variations, as well
as identification of some main parameters. This method
is also extended to include perfusion fluid temperature
variations and metabolic heat generation.

Section 2 of the paper presents the bio-heat two-port net-
work formalism. An application to impedance expressions
as well as simulations of frequency response for bronchi-
oles are presented in Section 3. Finally, conclusions and
perspectives are presented in Section 4.

2. BIO-HEAT TWO-PORT NETWORK FORMALISM

The analyzed scenario is a simple plane wall of tissue that
has longitudinal heat transfer along x axis as shown in
figure 1. The tissue has total length L and a cross section
Sw. This plane wall has thermal conductivity k, density ρ
and heat capacity c. There is a perfusion fluid with density
ρb and heat capacity cb. Perfusion coefficient ωb indicates
the total ratio between perfusion fluid volume flow rate V̇b
and the total volume of the perfused tissue Vt:

ωb =
V̇b
Vt
. (3)

φin φout

Tin(x = 0) Tout(x = L)

x
Sw

Fig. 1. 1D bio-heat thermal system

If one considers a scenario without external heat source
and the influence of metabolic heat generation is negligible,
equation (2) becomes:

ρc
∂T

∂t
= k

∂2T

∂x2
+ ρbcbωb(Ta − T ). (4)

In a medical context, an internal organ temperature can be
considered at a constant core temperature Tb, close to the
human body, namely 37◦C. By introducing the tempera-
ture variations of a tissue around the core temperature:

T̃ = T − Tb, (5)

as Tb is assumed constant, the time and space partial
derivatives for T̃ and T are equivalent. Also, under normal
conditions, the arterial blood temperature Ta tends to the
core temperature close to the core:

Ta ≈ Tb. (6)

Consequently, relation (4) comes down to:

ρc
∂T̃

∂t
= k

∂2T̃

∂x2
− ρbcbωbT̃ . (7)

By defining thermal diffusivity α and a perfusion heat
coefficient hb as:

α =
k

ρc
, hb =

ρbcbωb
k

, (8)

equation (7) becomes:

1

α

∂T̃

∂t
=
∂2T̃

∂x2
− hbT̃ , (9)

or else, by taking the Laplace transform and assuming null
initial conditions, one gets:[ s

α
+ hb

]
T̃ (x, s) =

d2T̃ (x, s)

dx2
. (10)

By considering a heat input Q̇in at x = 0 and an output
Q̇out at x = L:

Q̇in(s) = −kSw
∂T̃ (x, s)

∂x

∣∣∣
x=0

Q̇out(s) = −kSw
∂T̃ (x, s)

∂x

∣∣∣
x=L

,

(11)

and by introducing the input temperature Tin = T̃ (0, s)

at x = 0 and an output temperature Tout = T̃ (L, s) at
x = L, the bio-heat equation (10) can be rewritten as a
two-port network (see (Maillet et al., 2000, chap. 3)):[

Tin(s)

Q̇in(s)

]
= M

[
Tout(s)

Q̇out(s)

]
(12)

where M results from the solving of the bio-heat equation
in a finite section of length L:

M =

[
cosh(δL)

1

kSwδ
sinh(δL)

kSwδ sinh(δL) cosh(δL)

]
(13)



T̃in

Z1(s) Q̇in
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Z2(s) Q̇out
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Fig. 2. Thermal two-port network

with δ =
√

s
α + hb. Relation (12) can be represented by an

equivalent T circuit model, such as represented in figure 2
(see Maillet et al. (2000)).

The expressions for the impedances are given by:

Z1(s) = Z2(s) =
1

kSwδ
[coth(δL)− csch(δL)] (14)

and

Z3(s) =
1

kSwδ
csch(δL). (15)

2.1 Series impedance Z1 and Z2 asymptotic behavior

In low frequency, the series impedance Z1 (and therefore
Z2) will tend to:

lim
ω→0

Z1(jω) =
coth(

√
hbL)− csch(

√
hbL)

kSw
√
hb

= R1−bio,

(16)
an expression that characterizes a resistance.

Recalling the Taylor expansion at y = 0 and order 1 of

coth(y) =
1

y
+

1

3
y +O(y2),

csch(y) =
1

y
− 1

3
y +O(y2),

a low perfusion allows expressing the resistance limit:

lim
hb→0

R1−bio =
L

2kSw
, (17)

and as perfusion becomes more significant, knowing that

coth(
√
hbL)− csch(

√
hbL) ≈ 1, when

√
hbL > 3.5 (18)

the resistance tends to the following limit:

R1−bio ≈
1

kSw
√
hb
. (19)

This latter result signifies that perfusion reduces the static
gain of the series impedances Z1 and Z2.

In high frequency, the series impedance Z1 (and therefore
Z2) will tend to:

lim
ω→∞

|Z1(jω)| = 0, lim
ω→∞

arg |Z1(jω)| = −45◦, (20)

an expression that characterizes a constant-phase element:

Z1−HF (s) =
1

Cs
√
s

(21)

with Cs = kSw√
α

.

2.2 Shunt impedance Z3 asymptotic behavior

In low frequency, the shunt impedance Z3 will tend to:

lim
ω→0

Z3(jω) =
csch(

√
hbL)

kSw
√
hb

= R3−bio, (22)

an expression that also characterizes a resistance.

This result shows that a bio-heat two-port network leads
to a completely resistive network in low frequency instead
of the classic RC model. For a case of heat insulation at the
output, a constant temperature variation T̃in will lead to
a steady but inferior temperature variation at the output.
This is logical as in this model one considers that blood
flow is continuously evacuating heat all along the tissue.

A low perfusion allows expressing the resistance limit

lim
hb→0

R3−bio =∞ (23)

and as perfusion becomes more significant,

lim
hb→∞

R3−bio = 0. (24)

These limits are coherent with a non-perfused model, as
Z3 in such a case would be a pure capacitance, which
behaves as an infinite impedance at low frequencies. The
high perfusion limit reveals that even for really slow
temperature fluctuations, a strong blood flow will block
the propagation of a temperature variation input through
the whole length of the tissue.

In high frequency, the shunt impedance Z3 will tend to:

lim
ω→∞

|Z3(jω)| = 0, lim
ω→∞

arg |Z3(jω)| = −∞. (25)

2.3 Blood temperature fluctuation and metabolic heat

On the previous subsections, a circuit model was pro-
posed without metabolic heat generation nor external heat
sources. An additional assumption was that perfusion tis-
sue temperature was taken as Ta = Tb.

In a realistic scenario, there may be blood temperature
variations during surgery. The perfusion fluid is usually
controlled and can be set at a higher temperature than the
core temperature Tb in order to compensate for high heat
losses in open-heart surgery. Consequently, the perfusion
fluid temperature can be defined as:

Ta = Tb + ∆Ta(t), (26)

where Tb is the core temperature and ∆Ta(t) is a temper-
ature variation.

Under blood temperature variation and metabolic heat
generation, equation (9) then becomes:

1

a

∂T̃

∂t
=
∂2T̃

∂x2
− hbT̃ + hb∆Ta +

qm
k
. (27)

These additional terms may be interpreted as an internal
heat source. The inclusion of heat sources terms has
also been treated for two-port networks in Pailhes et al.
(2012)). It is now proposed to extend this latter result to
the bio-heat equation (see figure 3).

Let be a heat source function g(x, t) defined as:

g(x, t) = khb∆Ta + qm (28)

If ∆Ta and qm are independent of temperature and posi-
tion, this heat generation function leads to an additional
heat source in the circuit model given by:

Q̇d(s) =

∫ L

0

SwG(s) cosh(δx)dx (29)

or else:
Q̇d(s) = G(s)F (s) (30)



T̃in

Z1(s) Q̇in

Z3(s)

Z2(s) Q̇out

T̃out

Q̇d

Q̇d

Fig. 3. Thermal two-port network with blood temperature
fluctuation and metabolic heat generation

with G(s) = khb∆Ta(s) + qm(s) and F (s) = Sw sinh(δL)
δ .

3. LUNG APPLICATION

Lungs are exposed during cardiac open-heart surgery due
to ECC. As shown in previous sections, the perfusion
flow rate may heavily influence thermal behavior. Thus,
an adequate combination of perfusion tissue temperature
∆Ta and its flow rate (and consequently ωb) may help
to maintain the organ normal temperature during the
ECC. However, lungs exhibit a fairly complex geometry
as regular bifurcations appear (see figure 4).

T0

T1

Tn

Tn+1

S0

S1

Sn

L0

L1

Ln

Trachea

Fig. 4. Lung scheme

The complexity relies on the bifurcations when going from
level n to level n + 1. Kuwahara et al. (2009) proposed a
simplification: lung models are geometrically distributed
to provide an optimal equivalent airway resistance. This
means that pressure losses along these bifurcations are
minimized. Thus, by applying Murray’s bifurcation law,
recursive relations are obtained for the diameters:

dn+1

dn
= 2−

1
3 , (31)

the cross-sections:
Sn+1

Sn
= 2−

2
3 , (32)

and the lengths:
Ln+1

Ln
= 2−

1
3 . (33)

ρ 550 [kg][m−3] ρb 1060 [kg][m−3]

c 3718 [J ][kg−1][K−1] cb 3900 [J ][kg−1][K−1]

k 0.28 [W ][m−1][K−1] ωb 0.0043 s−1

L0 0.1 m d0 1.4 cm

Table 1. Simulation parameters for lung
impedance
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In this way, it is possible to provide the expressions of the
two-port network impedances at any level n, as follows:

Z1,n(s) =
2

2n
3

kS0δ
[coth(2−

n
3 L0δ)− csch(2−

n
3 L0δ)] (34)

Z3,n(s) =
2

2n
3

kS0δ
csch(2−

n
3 L0δ). (35)

3.1 Resistance and fractance evolution in the lungs

Table 1 shows the parameters used for simulations which
are defined according to human body characteristics. The
evolution of the key parameters such as low frequency
resistances R1−bio,n and R3−bio,n as well as constant-
phase parameter Cs,n for the impedances Z1,n and Z3,n

according to the branch level n are plot in figures 5 and 6.

For Z1, by only considering low and high-frequency limits,
an asymptotic impedance approximation may be obtained:

Z1−bio,n(s) =
R1−bio,n

1 +R1−bio,nCs,n
√
s
. (36)

Therefore, R1−bio,nCs,n may be interpreted as a time con-
stant. Figure 5 shows that resistance increases as levels
approach alveoli (n = 23). Note that this progression is
highly nonlinear, as the airways exhibit a relatively low
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resistance up to n = 10 and then grows exponentially.
Fractance Cs,n decreases exponentially up to n = 10. In
order to get a deeper understanding of this impedance dy-
namics, the time constant R1−bio,nCs,n was also plotted. It
shows that even though resistance dramatically increases
after n = 10, fractance Cs,n is so small that the time
constant does not show a dramatic change over the whole
lung. System becomes faster for smaller levels, but the
progression is slower (the final and initial values have a
factor of 10 between them). Note that the time constant
is constant for the whole entry (up to n = 6).

R3−bio,n is low up to n = 15, which implies that tempera-
ture variations at the section entry are absorbed through
the tissue and do not manage to significantly alter the
output temperature. However, as n increases, this resis-
tance blows up to values significantly higher than those
found for R1−bio,n: a temperature input may more easily
be transmitted to the section end. As both resistances
blow up for the higher levels, a global lung thermal circuit
will behave approximately as an open circuit at a given
level and the whole lung structure may not be required to
provide an accurate thermal model. Further studies should
be done to take into account the vast number of alveoli in
the lungs as well as its bifurcation geometry.

3.2 Frequency responses of Z1,n and Z3,n

While breathing, heat and temperature vary in time, thus
frequency responses may be analyzed over a realistic fre-
quency range. Human breathing is not a fast phenomena,
but can go up to 20 breaths per minute in normal con-
ditions. However, on most adults the breathing rate is
around 12 breaths per minute. Slow breathing is consid-
ered in the range [0.07− 0.16]Hz (see Russo et al. (2017)).
Above 14 breaths per minute (or 0.23Hz), breathing can
already be considered as an abnormal value (see Cretikos
et al. (2008)). Also, the simulations will be carried out
in the frequency range [0.01 − 10]rad/s in order to cover
normal breathing. Figures 7 and 8 show the gain frequency
responses for Z1,n and Z3,n.

In the lung first levels, Z1,n behaves as a pure fractance. As
one gets in deeper branches the resistance low-frequency
behavior becomes more evident. The higher the level n,
the smaller the branches, the higher the cut-off frequency.

For Z3,n, low levels have extremely low gains and could
almost be considered as a short circuit. This is logical as
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a long section will have more volume for heat evacuation.
The higher the level n, the greater the static gain. On the
frequency range, the low-frequency resistance behavior is
not visible. On the other hand, one may notice for low
frequencies in the curves for n = 15 and n = 20 that
the initial slope is around −20dB/dec, which implies a
capacitance behavior. As frequency increases, this slope
increases, which implies further high frequency filtering.

3.3 Perfusion tissue temperature variation

A simple academic scenario is proposed to observe the
system sensitivity to a variation in perfusion fluid tem-
perature. The input will be considered to be at the body
core temperature T̃in = 0 and the output will be insu-
lated Q̇out = 0. Therefore, the transfer function relating
an output temperature deviation T̃out,n (at level n) and
perfusion fluid variation ∆Ta will be:

HTa,n(s) =
T̃out,n(s)

∆Ta(s)
=
khbSw sinh(δL)Z1,n(s) · Z3,n(s)

δ [Z1,n(s) + Z3,n(s)]
(37)
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Figure 9 shows the gain frequency response of HTa,n. For
low levels, length difference is not significant as the static
gains for n = 5 and n = 10 are almost identical. Both levels
can be considered as long enough for the null input to be
fully compensated by fluid temperature. For both curves,
the static gain is 0 dB: slow fluid temperature variations
will easily affect the whole system. As levels increase, static
gain is reduced because of smaller dimensions. There is a
clear first-order low pass filter behavior for all levels.



4. CONCLUSION AND PERSPECTIVES

A new heat transfer modeling in a perfused tissue is
proposed by combining Pennes bio-heat equation and the
quadrupole network: a T circuit model with impedances
Z1,n and Z3,n is obtained that depends on the system
geometry and thermal properties. The thermal properties
of a perfusion tissue as well as its perfusion coefficient
ωb influence the impedance expressions. A theoretical
analysis was carried out on the impedance frequency
behaviors as well as the perfusion influence. The results
are coherent and support the blood flow as a natural
thermal regulation. The circuit model was modified to
allow the inclusion of metabolic heat rate and perfused
fluid temperature variations. Lung application showed an
expected low-pass behavior for impedance and static gain
evolutions as going into lung higher levels. High levels
exhibit extremely high resistance suggesting open circuit
behavior. Lung global geometry should also be taken into
account. For perspectives, the lung successive branching
could be considered to analyze if the number of alveoli
is enough to compensate for its high resistance. A global
lung model could be studied where dead alveolar space and
exchange alveolar space are used. Perfusion coefficient may
be more accurate if modelled as a function of the current
level n. Finally, recursive system identification could be
implemented, so that surgeons get a precise knowledge of
the lung during surgery.
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