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Abstract: Motion capturing systems produce a large amount of information on the motion of individuals. 

A growing number of data reduction techniques have been developed to reduce the amount of data while 

keeping relevant information. An overview that compares and identifies the advantages and disadvantages 

of these methods on cyclic motion data is, however, lacking. Therefore, this study aims to assess the features 

of different data reduction techniques by applying them to a large public gait data set. Due to the periodicity 

of cyclic data, an individual cycle can be isolated and analyzed. The analysis of single cycles requires pre-

processing steps to segment and align the individual cycles. The latter is needed to isolate the amplitude 

variability. Three alignment procedures with different complexity, namely Linear Length Normalization 

(LLN), Piecewise LNN (PLLN) and Continuous Registration (CR), are assessed based on the amount of 

resulting variation. Subsequently three data reduction techniques (i.e. Principal Component Analysis 

(PCA), Principal Polynomial Analysis (PPA) and Multivariate Functional PCA (MFPCA)) are applied to 

the aligned single gait cycles. The data reduction techniques are evaluated based on the in-sample error, the 

out-of-sample error, the compactness and the computation time to produce a model. The curves aligned 

with CR have the lowest remaining variation and thus the lowest amount of remaining phase variation. The 

differences between the different data reduction techniques appear to be minimal. PPA shows to be the 

most compact and is therefore recommended when compactness is crucial and out-of-sample performance 

is less essential. The use of MFPCA is advised when one wants to include data from different sources. PCA 

is suggested when computation time is key.  
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1. INTRODUCTION 

Motion Analysis can already be traced back hundreds of years 

but started to grow out to a scientific discipline with the 

pioneering work by photographer Eadweard Muybridge on 

animal locomotion (Baker, 2007). The progress in technology 

results in more efficient measurements and provides 

specialists with a large amount of reliable information 

(Sutherland, 2002). For traditional data analytics methods, 

analyzing these large volumes of motion data might become 

cumbersome (Phinyomark et al., 2018). To this end, a growing 

number of techniques for data parameterization or data 

reduction were developed. For cyclic motion data, an overview 

of the advantages and disadvantages is, however, lacking. 

Therefore, this study aims to compare the features of different 

data reduction techniques by applying them to a large public 

data set. A section on related work is included to support the 

choice of the selected data reduction techniques. 

1.1 Related work 

Analyzing cyclic motion, can be performed in two ways. 

Either one can isolate and analyze a single cycle or one can 

study a repeated series of motion cycles in time. As the former 

is typically used in literature and requires another approach 

than the latter, the latter is not included in this study.  

A typical example of cyclic motion is human gait. In gait 

analysis, a single cycle is called a gait cycle (Taborri et al., 

2016). Analyzing gait cycles requires several pre-processing 

steps to isolate and align the segmented cycles. The latter is 

needed as within a sample of single-cycle gait curves, there is 

both amplitude and phase variation (Chau et al., 2005; Forner-

Cordero et al., 2006; Sadeghi et al., 2000). When describing 

gait variation, one typically refers to amplitude variability 

(Chau et al., 2005). Without correction for phase variation, 

simple point-by-point averaging of the joint angle curves 

diminishes useful curve features and misrepresents the 

temporal position of the landmarks (Chau et al., 2005). 



Consequently, to compare the joint angles on a point-by-point 

basis, temporal alignment techniques are needed. Linear 

Length Normalization (LLN) linearly compresses/expands the 

time axis of the gait data such that the duration of all the gait 

cycles is the same (Helwig et al., 2011). However, temporal 

differences between events remain present. To improve upon 

this alignment, piecewise LLN (PLLN) divides the time-series 

in subphases at specific landmarks and aligns each subphase 

with the corresponding subphase of the template (Helwig et 

al., 2011). LLN and PLLN both belong to the category 

‘landmark registration’. These methods suffer from a number 

of potential drawbacks (Ramsay et al., 2009b). The landmarks 

can be concealed in some of the curves, and identifying their 

timing may involve tedious interactive graphical procedures. 

Additionally, landmark based registration typically uses only 

a limited set of landmarks, which leaves large parts of the 

curves unregistered (Ramsay et al., 2009b). Therefore, 

Continuous Registration (CR) that uses the entire curve rather 

than their values at specified points is developed (Chau et al., 

2005; Crane et al., 2010; Ramsay et al., 2009b; Sadeghi et al., 

2003). 

Following the pre-processing, the dataset can be 

parameterized. The traditional approach is to apply Principal 

Component Analysis (PCA) (De Roeck et al., 2020; Luksys et 

al., 2018; Milovanović & Popović, 2012). PCA is a linear data 

reduction technique that creates a new set of orthogonal and 

independent variables (principal component (PC) vectors) by 

making linear combinations of the original possibly correlated 

variables. Subsequently, the original data is expressed as linear 

combinations of the PCs. In PCA, the data points of each curve 

are assumed to be independent of each other (Warmenhoven 

et al., 2017). 

Different non-linear alternatives to PCA have been developed 

(Hou et al., 2009; Van Der Maaten et al., 2009; Zhang et al., 

2018). However, for these non-linear techniques the out-of-

sample extension, volume-preservation and invertibility are 

often hurdles (Zhang et al., 2018). Principal Polynomial 

Analysis (PPA) overcomes these hurdles by modelling the 

directions of maximal variance by means of curves, instead of 

the straight lines used in PCA (Laparra et al., 2014).  

Functional PCA (FPCA) forms another appealing alternative 

to PCA. FPCA is the equivalent of PCA in the functional 

domain (Warmenhoven et al., 2021) and can be used to 

examine multiple variables simultaneously (Happ & Greven, 

2018). To indicate the primary modes of variation, 

Multivariate Functional Principal Component Analysis 

(MFPCA) uses eigenfunctions, whereas PCA and PPA use 

eigenvectors (Ramsay et al., 2009a).  

The amount of data reduction techniques has grown over the 

last decades. However, a reliable overview of the advantages 

and disadvantages of these different techniques for cyclic 

motion data is missing. Therefore, in this study, we present a 

benchmarking experiment in which we selected 

parameterization techniques based on their ability to produce 

statistical models that are generative and may be used for data 

augmentation. In addition, these three selected 

parameterization techniques (i.e. PCA, PPA and MFPCA) 

allow for a tight control during the construction of the 

statistical model. Before applying the parameterization 

techniques, optimal curve correspondence is recommended. 

Three different alignment techniques (LLN, PLLN or CR) are, 

therefore, evaluated. 

2. MATERIALS AND METHODS 

To compare the different methodologies applicable to single 

cycle analysis, we use the comprehensive gait database from 

(Schreiber & Moissenet, 2019). The data is processed using 

the Anybody musculoskeletal modelling package (Anybody 

Technology A/S Aalborg, Denmark) to obtain 6 joint angles, 

namely hip flexion-extension, hip abduction-adduction, hip 

external-internal rotation, knee flexion-extension, ankle 

plantar-dorsi flexion and subtalar eversion-inversion.  

2.1 Pre-processing 

Before parameterization can be performed, a single motion 

cycle must be isolated, normalized and aligned. To isolate 

separate cycles, the fundamental periods of the knee flexion 

curves are estimated using the Fourier transform. The knee 

flexion curve is chosen as reference, due to the large amplitude 

differences.  

The next step is to remove the phase variation by aligning the 

cycles. Three different alignment techniques, namely LLN, 

PLLN and CR, are applied and evaluated. To obtain the LLN 

version of the cycles, the cycles are normalized to 101 points. 

For the PLLN procedure, the two peaks and the valley in-

between or the single swing peak of the knee flexion curves 

are chosen as additional landmark(s) to subdivide the knee 

flexion cycle in subphases. Subsequently, the subphases are 

linearly expanded/ compressed to match the length of the 

corresponding subphases of a template. The other joint angle 

curves are subdivided and scaled using the parameters from 

the corresponding knee flexion curve. For the CR procedure, 

the CR implementation in MATLAB (MathWorks, Natick, 

Massachusetts, United States of America) of Ramsay et. al 

(2009a) is used with 17 Fourier basis functions and a 

roughness parameter of 10. The three alignment procedures are 

compared based on the remaining variation. The Root Mean 

Square Error (RMSE) between the registered curves and their 

corresponding mean curve are a measure for this variation 

(Crane et al., 2010). The mean RMSE is calculated as follows: 
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1
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with 𝑐𝑟𝑒𝑔 and 𝑐𝑟𝑒𝑔,𝑚𝑒𝑎𝑛 respectively a registered curve and the 

mean of the registered curves, 𝑁 the number of training 

samples and 𝑁𝑡 the number of points where the 𝑐𝑟𝑒𝑔 and 

𝑐𝑟𝑒𝑔,𝑚𝑒𝑎𝑛 are evaluated. To compare the RMSEs for the 

different alignment techniques, the Kruskal-Wallis test is used. 

Post hoc comparison is performed using the Bonferroni post 

hoc multiple comparison test. The complete pre-processing 

and statistical analysis of the alignment procedures is 

performed in MATLAB (MathWorks, Natick, Massachusetts, 

United States of America). 



 
Figure 1 Single cycle analysis: the in-sample errors (horizontal lines) when all possible samples are included during training and the out-of-

sample errors for different amounts of training samples included during training for the six different joint angle curves.

2.2 Parameterization 

Principal Component Analysis, Principal Polynomial Analysis 

and Multivariate Functional Principal Component Analysis are 

applied to the aligned curves set to test their performance. The 

amount of meaningful variance for PCA is determined based 

on the rank of roots permutation test (Vieira, 2012). For PPA 

and MFPCA, the same amount of variance is retained as in 

corresponding case of PCA. For PCA, an in-house developed 

algorithm, implemented in MATLAB is used. For PPA, the 

implementation of Laparra (2014) in MATLAB (MathWorks, 

Natick, Massachusetts, United States of America) is used. The 

maximum allowed polynomial degree of the principal 

components curve is optimized using nested cross-validation. 

For MFPCA, the MFPCA implementation in R (The R 

foundation, Vienna, Austria) by Happ and Greven (2018) is 

adopted. In this particular application, a univariate basis 

expansion to represent the joint angle curves needs to be 

chosen. In our case cubic B-splines are chosen (Warmenhoven 

et al., 2021; Zernicke et al., 1976). The number of basis 

functions is defined so that the knee flexion curves of the 

training set are represented with a mean RMSE lower than 

0.5°, while the error does not decrease with more than 5% 

when including one additional basis function. The mean 

RMSE is calculated as follows: 

𝑚𝑒𝑎𝑛 𝑅𝑀𝑆𝐸𝑠𝑝𝑙 =
1
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with 𝑐 and 𝑐𝑠𝑝𝑙 respectively, the knee flexion curve and the 

approximated knee flexion curve, 𝑁 the number of training 

samples and 𝑁𝑡 the number of points where the 𝑐 and 𝑐𝑠𝑝𝑙 are 

evaluated. 

The different parameterization techniques are evaluated based 

on the in-sample error (accuracy), the out-of-sample error 

(generalization), the resulting model compactness and the 

computation time to build the model. The in-sample error is 

calculated using the two equations below: 
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with 𝑐𝑟 the reconstructed curves, 𝑁𝑡 is the number of time 

points where the curves are evaluated, 𝑁 the number of 

samples on which the model is trained and evaluated. For PCA 

and PPA, the 𝑐𝑜𝑟 are the original curves. For MFPCA, the 𝑐𝑜𝑟 

the approximations of the original curves. The out-of-sample 

error is calculated using the equations (3) and (4) where 𝑁 is 

the number of samples in the test set. Additionally, the equality 

in variance of the out-of-sample error, a measure for the 

stability of the models, is tested using the Barlett’s test. A 

Bonferroni correction is applied to perform the pair-wise 

comparisons. The statistical analysis is performed in 

MATLAB (MathWorks, Natick, Massachusetts, United States 

of America). 

3. RESULTS 

3.1 Pre-processing 

Curve alignment has an important impact on the remaining 

variation. CR aligned curves have a statistically lower RMSE 

than LLN and PLLN aligned curves for respectively four and 

five out of six joint angle curves. The mean RMSEs of the 

different gait curves after the three different alignment 

techniques are shown in table 1.  

3.2 Parameterization 

For the parameterization, the in- and out-of-sample errors for 

PCA, PPA and MFPCA are not noticeably different (figure 1). 

The out-of-sample errors do not considerably improve when 

more than 300 training samples are included during training. 

PPA and PCA have a statistically different variance for the 

most numbers of training samples included (figure 2). The 

rank of roots statistical test indicates that when all samples are 

used to build a model, 94.7% of the variance is meaningful. 

This is captured with 20, 19 and 18 principal components for 

PCA, MFPCA and PPA respectively. The creation of the 

forward model required 1.5 s for PCA, 139.5s for PPA and 10 

s for MFPCA on a Laptop PC with Intel(R) Core(TM) i7-

6700HQ CPU @ 2.60GHz. 



Table 1 Single Cycle Analysis: the mean RMSE between the 

registered curves and the corresponding mean of the registered 

curves for the curves aligned with LLN, PLLN and CR for the 

different joint angle curves. 

[°] LLN PLLN CR 

Hip flexion 36.2  “ 34.7  ° 25.4 “ ° 

Hip 

abduction 
5.1 *  6.0 * ° 4.85  ° 

Hip external 

rotation 
16.9   17.0   17.1   

Knee flexion 32.1  “ 28.2  ° 17.9 “ ° 

Ankle 

plantarflexion 
15.3 * “ 18.4 * ° 10.1 “ ° 

Subtalar 

eversion 
21.0 * “ 22.0 * ° 19.6 “ ° 

Statistically significant differences between LLN and PLLN, LLN and 

CR and PLLN and CR are indicated by respectively *, “,° for P<0.05 

calculated with Kruskal-Wallis and a Bonferroni correction. 

 

 

Figure 2 Single cycle analysis: the out-of-sample errors (with 

standard deviations) for the knee flexion curve for PCA and PPA 

models trained on different amounts of training samples. The 

colored markers indicate a statistical difference between the 

variances of PCA and PPA models trained. 

4. DISCUSSION 

Human locomotion is characterized by inter- and intra-subject 

variability. Capturing the inter-subject variation in a statistical 

model allows to study this variation efficiently. PCA, PPA and 

MFPCA trained models give very similar in- and out-of-

sample errors. MFPCA and PPA are slightly more compact 

than PCA. Although the mean out-of-sample error of PPA is 

about equal to those of PCA, for some combinations of joint 

angle curve and number of training samples the variation is 

statically higher, indicating that PPA is less stable. 

Furthermore, the computation time of PPA is drastically 

higher. Independent of the parameterization technique, the 

creation of a model that generalizes to the whole able-bodied 

population requires at least 300 training samples. For the 

alignment step in the pre-processing of the single cycles, CR 

outperformed LLN and PLLN in removing phase variability.  

FPCA is the equivalent of PCA in the functional domain. It 

handles the continuity of the data by approximating the curves 

with a number of basis functions. This smoothens that data. 

Thus, for densely regularly sampled variables FPCA is 

equivalent to PCA with an additional smoothness parameter 

(Warmenhoven et al., 2021). Hence, it is no surprise that 

MFPCA shows very comparable results to PCA. However, 

(M)FPCA has several advantages over PCA. It allows to 

include data from several sources with different sampling rates 

or sparce data of different dimensions (Happ & Greven, 2018; 

Warmenhoven et al., 2021). In addition, while PCA runs into 

difficulties in high dimensions, FPCA provides a more 

informative way of examining the sample covariance structure 

(Shang, 2014).  

Different non-linear alterative to PCA exist (Hou et al., 2009; 

Van Der Maaten et al., 2009; Zhang et al., 2018). One of them 

is PPA (Laparra et al., 2014). In contrast to other non-linear 

alternatives, PPA has several attractive features for gait 

analysis such the out-of-sample extension, volume-

preservation and invertibility. Nevertheless, PPA is found to 

be to less stable than PCA. In addition, PPA has a high 

computational need due to its current dependency of iterative 

steps makes it less useful to date. 

In addition, a comment must be made on the amount of 

variance to be retained in a statistical model. Traditionally, 

when performing data reduction 95% of the variance is 

retained. However, kinematic data is often noise rich data. 

Therefore, it is interesting to use a permutation test to 

determine how many principal components are meaningful. 

For the single cycle data aligned with CR, the rank of roots test 

identified that 94.7% of the variance is meaningful. PPA is 

able to capture the meaningful variance with the fewest 

components. This result cannot be easily compared to other 

studies as the compactness of a model depends on the size of 

the training set. As a consequence, it is difficult to compare the 

compactness of different models trained on different training 

sets.  

Another important finding relates to the isolation of amplitude 

variability. Joint angle curves aligned with CR demonstrate a 

statically lower remaining RMSE between the registered curve 

and the mean of registered curves than joint angle curves 

aligned with LLN or PLLN. This indicates that CR removes 

statistically more phase variation. Sadeghi et al. (2003) found 

similar results when comparing LLN with CR. In addition, 

they showed that the curve’s structural characteristics were not 

greatly modified. Besides the lower variability, another 

advantage of CR is that it makes use of the different types of 

joint angle curves while preserving the time-relation between 

these different joint angle curves. In contrast, the alignment 

procedure of PLLN is determined on one type of joint angle 

curve.  

Alongside alignment, the selection of a representative gait 

cycle is of importance for single cycle analysis. In many gait 

analysis studies this problem is solved by choosing one gait 

cycle from the middle of the recording sequence or by 

averaging several cycles from the middle (Djurić-Jovičić & 

Miler-Jerković, 2011). Jacobsen and Rasmussen (2019) 

advocated another possibility. They estimated the mean 



pattern of a joint angle curve by fitting a Fourier series to the 

corresponding series of cycles (Jacobsen & Rasmussen, 2019). 

In addition, using a series of cycles allows to study intra-

subject variability. The latter is often used to identify the 

presence of a pathological condition (Morgan & Noehren, 

2018). In our study, we used the gait cycles from Schreiber and 

Moissenet (2019) dataset and assumed they provided 

representative gait cycles. 

The strengths of this study are that all the techniques are 

applied on the same large public dataset which allows for an 

easy comparison (Phinyomark et al., 2018). However, our 

findings need to be interpreted in the context of some 

limitations. In this review, the parameterization and alignment 

is focused on amplitude variability. However, the phase 

variability might also be of interest as it might contain 

information about the control of gait parameters and the 

stability (Chau et al., 2005; Forner-Cordero et al., 2006). 

Additionally, only one way of PLLN alignment is 

implemented. The influence of using another curve as 

reference or using other landmarks was not determined.  

5. CONCLUSION & RECOMMENDATIONS 

In conclusion, this paper presented a comparison between 

different popular and/or recently emerged techniques to align 

and parameterize single cycle motion data. We conclude that 

CR achieves better curve correspondence than LLN and 

PLLN. Non-linear techniques for parameterization are 

interesting from a mathematical point of view and appear to 

perform well. Yet, on large datasets the difference with 

traditional PCA is minimal. For applications which require 

high compactness and in which the out-of-sample performance 

is less crucial, we recommend the use of PPA. To create a 

statistical model from samples from different sources, we 

suggest the use of MFPCA. When compactness is less crucial 

though computation time is, the use of PCA is advised. Finally, 

this paper presents the methods for the analysis of single 

cycles. In future work, we will also evaluate the analysis of a 

series of cycles. 
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