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Abstract: Positive-end-expiratory-pressure (PEEP) have proved effective in recruiting lung volume and 

keeping alveoli open. However, there is no standard means to find an optimal patient-specific PEEP, 

creating variability in care and outcomes. There is thus a need for personalized approaches to find the best 

PEEP and optimise care. This research extends a well-validated virtual patient model with a newly proposed 

function to predict lung distension, while the impact on outcome of two different elastance identification 

strategies are discussed and compared. A prior studied and effective exponential basis function set is used 

as the general model, while elastance are identified using overlapped and separate methods, respectively. 

In this approach, model with overlapped elastance identification and proposed distension function yields 

an absolute median peak inspiratory pressure (PIP) prediction error of 1.50cmH2O for 623 prediction cases. 

Comparison between clinically measurement and model prediction for PIP yields R2=0.90 across 623 

predictions in total, while R2=0.87 with separate elastance identification. Furthermore, both elastance 

identification methods are an improvement compared to predictions without proposed distension function 

(R2=0.82). Validation is fulfilled with 18 volume controlled ventilation patients respiratory data at 7 

different baseline PEEP levels (0-12cmH2O) with a maximal PEEP prediction interval of 12cmH2O. 

Overall, the results demonstrate the impact of elastance identification methods, as well as the potential and 

significance for accurately capturing distension mechanics, which thus providing guidance for clinical care 

and insights for predictive lung mechanics modelling.  

Keywords: Virtual Patient; Digital Twin; Mechanical ventilation; Critical Care; Basis function; Prediction; 

Elastance identification; Lung distension; VILI; Pressure-Volume loop. 

1. INTRODUCTION 

Ventilator induced lung injury (VILI) is one of the risks of 

suboptimal mechanical ventilation (MV) care, increasing 

morbidity and mortality (Carney et al., 2005; Pavone et al., 

2007). This risk increases in positive-end-expiratory-pressure 

(PEEP) titration which is capable to keep alveoli open and 

ensure adequate oxygenation for respiratory failure patients 

(Briel et al., 2010).  

Variability in care and risk occurred since no standard method 

in determining the optimal personalized PEEP level for 

patients (Chase et al., 2018; Chiew et al., 2011; Kim et al., 

2020). Although model-based approaches are one means to 

personalize care (Chase et al., 2018), and assess lung 

mechanics (Damanhuri et al., 2016; Sundaresan & Chase, 

2012; Sundaresan et al., 2011), very few is able to predict 

pulmonary mechanics at a new PEEP level with limited 

bedside available information (Morton et al., 2019a; Morton et 

al., 2019b; Morton et al., 2020; Zhou et al., 2021), which is 

more likely the situation occurred in the intensive care unit. 

Thus, an accurate, predictive lung mechanics model would 

help clinicians select and test MV settings with lower risks.  

Patient-specific basis functions have been proposed for 

biomedical simulation and prediction and are capable to offer 

novel, model-based insight into physiological mechanics 

(Langdon et al., 2018; Morton et al., 2019b; Morton et al., 

2020). A nonlinear, physiologically-relevant hysteresis loop 

model (HLM) using an exponential basis function set 

accurately predicted the evolution of lung mechanics as MV 

settings changed for both VCV and pressure controlled 

ventilation (Zhou et al., 2021), but did not capture distension 

in VCV, which is considered as one of the most important 

factors related to VILI (Galiatsou et al., 2006).  



This research discussed two different elastance identification 

methods influence on model prediction outcome, while an 

added personalized basis function is proposed to capture lung 

distension as an extension of the model in (Zhou et al., 2021). 

Overall, better prediction outcome is achieved with overlapped 

elastance identification and proposed distension function in 

this approach, while novel insights for distension prediction 

and elastance modelling strategy are offered. 

2. METHODS 

2.1 HLM lung mechanics model 

The dynamic equation of motion for the HLM lung mechanics 

model is defined (Zhou et al., 2021): 

�̈� + 𝑅�̇� + 𝐾𝑒𝑉 + 𝐾ℎ1𝑉ℎ1 + 𝐾ℎ2𝑉ℎ2 = 𝑓𝑉(𝑡) + 𝑃𝐸𝐸𝑃 (1) 

where V is the volume of air delivered to the lungs, Vh1 and Vh2 

are hysteretic volume response during inspiration and 

expiration, respectively, Ke represents the alveolar recruitment 

elastance, named 𝑘2  in this approach, Kh1 and Kh2, are 

determined by two nonlinear hysteretic springs for alveolar 

hysteresis elastance during inspiration and expiration, 

respectively, R is the airway resistance, PEEP is the positive 

end-expiratory pressure, and 𝑓
𝑉

(𝑡)  is the steady-state input 

force. Detailed formulations for calculating each parameter 

can be found in (Zhou et al., 2021). 

2.2 P-V loop identification  

At any baseline 𝑃𝐸𝐸𝑃𝑖  (𝑖 = 1), the hysteresis loop analysis 

method (HLA) can identify elastance values. Expiration is not 

identified and discussed in this study focusing on peak 

inspiratory pressure (PIP) prediction and distension during 

inspiration. For inspiration, the half cycle is first divided into 

2 segments, with 𝑘1 for the first short segment and 𝑘2, 𝑘2𝑒𝑛𝑑 

for the longer segment ending at the peak inspiratory pressure. 

Two previously presented 𝑘2  and 𝑘2𝑒𝑛𝑑  identification 

methods are applied. 

Method 1 (𝑘2𝑜𝑝): An overall 𝑘2 is first identified across the 

long segment. Then the segment is assessed again to find a 

potential, increased stiffness (reduced compliance) third 

segment, 𝑘2𝑒𝑛𝑑, which will uses the newly proposed basis 

function prediction procedure to capture over-distension as 

PEEP rises, as shown in Figure 1 (a). 

Method 2 (𝑘2𝑠𝑝): 𝑘2 and 𝑘2𝑒𝑛𝑑 are identified and separated 

with the breakpoint at the upper inflection point, which is 

automatically identified by HLA (Zhou & Chase, 2020; Zhou 

et al., 2015), as shown in Figure 1 (b). 

Since at lower PEEP levels the overdistension is less likely to 

be observed yielding little or no difference between 𝑘2 and 

𝑘2𝑒𝑛𝑑 for both two methods, the prediction performance is 

assumed to have larger difference if a flattening curve is 

observed as pressure approaches PIP (usually at higher PEEP 

levels). Note the two identification methods will only have 

influence in the value of 𝑘21 while 𝑘2𝑒𝑛𝑑 is exactly the same. 

Thus, three prediction combinations are possible in this study 

comprising: 𝑘2𝑜𝑝  without any 𝑘2𝑒𝑛𝑑 ; 𝑘2𝑠𝑝  with 𝑘2𝑒𝑛𝑑 

(Method 2); and 𝑘2𝑜𝑝 with 𝑘2𝑒𝑛𝑑 (Method 1). 

2.3 Basis functions for elastance prediction 

After HLA identification of a single breath at any PEEP, an 

exponential basis function set used in prior studies (Laufer et 

al., 2017; Morton et al., 2018; Zhou et al., 2021), is used to 

predict the evolution of recruitment elastance (for both 𝑘2𝑜𝑝 

and 𝑘2𝑠𝑝) at higher PEEP (𝑖 > 1). It assumes elastance has a 

bowl shape across PEEP (Zhou et al., 2021) and is defined: 

𝑘2𝑖 = (
𝑃𝐸𝐸𝑃𝑖

𝑘1
+

𝑘21

𝑘1
∗ 𝑒𝑏∗

𝑃𝐸𝐸𝑃𝑖
𝑘1 ) ∗ 𝑘1 (2) 

𝑏 =
𝑘1

𝑃𝐸𝐸𝑃1
∗ log

𝑘21−𝑃𝐸𝐸𝑃1

𝑘21
(3) 

Where 𝑏 is the exponential rate of recruitment, 𝑘1 and 𝑘21 are 

the identified values via HLA from baseline PEEP, and 

𝑃𝐸𝐸𝑃𝑖  is the predicted PEEP level. 

 

(a) Elastance identification with overlapped 𝑘2 using 

Method 1 

 

(b) Elastance identification with separate 𝑘2 identified 

simultaneously using Method 2 
Figure 1  Examples of HLA identification for a measured clinical P-

V loop at a baseline PEEP = 12cmH2O for Patient 9, (a) with 

separate 𝑘2𝑠𝑝  and (b) overlapped 𝑘2𝑜𝑝  identification from 

𝑘2𝑒𝑛𝑑. 

At the same time, the evolution of distension at higher PEEP 

levels (𝑘2𝑒𝑛𝑑𝑖 , 𝑖 > 1) is also predicted. In this approach, end 

expiratory volume ( 𝐸𝐸𝐿𝑉1 ) and expiratory tidal volume 

(𝑃𝐼𝑉1 − 𝐸𝐸𝐿𝑉1, with 𝑃𝐼𝑉1 peak inspiratory volume) identified 

at baseline PEEP are assumed to interact with predicted 𝑘2𝑖 to 

predict 𝑘2𝑒𝑛𝑑  distension elastance evolution with PEEP. A 

new basis function is thus proposed to capture and predict the 

evolution of over-distension in k2end for HLM modelling:  



𝑘2𝑒𝑛𝑑𝑖 = (
𝑃𝐸𝐸𝑃𝑖

𝑘2𝑖
+

𝑘2𝑒𝑛𝑑1

𝑘21
∗ (𝜃1 + 𝜃22) ) ∗ 𝑘2𝑖 (4)  

𝜃1 =
𝑘2𝑒𝑛𝑑1−𝑃𝐸𝐸𝑃1

𝑘2𝑒𝑛𝑑1
(5)  

𝜃2 = 𝛥𝑃𝐸𝐸𝑃 ∗
𝐸𝐸𝐿𝑉1

𝑃𝐼𝑉1−𝐸𝐸𝐿𝑉1
(6)  

Where Δ𝑃𝐸𝐸𝑃 = 𝑃𝐸𝐸𝑃𝑖 − 𝑃𝐸𝐸𝑃1. Figure 2 shows a sketch 

of basis function terms over PEEP for 𝑘2𝑒𝑛𝑑 evolution. 

 

 
Figure 2  Upper panel illustrates the contribution of each term and 

how they change over PEEP for 𝑘2𝑒𝑛𝑑  prediction in (4)-(6), 

while lower panel presents the yielding 𝑘2𝑒𝑛𝑑𝑖  with 

predicted 𝑘2𝑖.  

2.4 Patient data 

Ventilation data from 18 ventilated ICU patients from the 

McREM trial (Stahl et al., 2006) is used to validate the basis 

functions and methods proposed. All patients were fully 

sedated and intubated under invasive VCV. The McREM trial 

was conducted across eight German university ICUs from 

September 2000 to February 2002 (Stahl et al., 2006). One 

incremental staircase recruitment maneuver (RM) with 

Δ PEEP = 2cmH2O/step was performed for each patient 

starting at 0cmH2O. The prediction procedure is applied for 

higher PEEP levels (𝑖 = 2, … , 7) after identification at baseline 

PEEP (𝑖 = 1). To test the robustness and generality of the 

HLM model and basis function sets, prediction tests are 

applied across a range of baseline PEEP = 0, 2, 4, 6, 8, 10, and 

12cmH2O with a further 6 prediction steps (2cmH2O interval) 

from each baseline level, yielding a maximum value for 

ΔPEEP = 2x6 steps = 12cmH2O. There are thus a total of 623 

predictions across the 7 baseline PEEP test groups and 

patients. Demographics for the patients can be found in (Zhou 

et al., 2021) due to space limitations. 

3. RESULTS 

The cumulative distribution function (CDF) plots are 

presented in Figure 3 (623 predictions) showing the error 

reductions in PIP prediction obtained using the proposed 

𝑘2𝑒𝑛𝑑  function and its evolution. Moreover, an overall 

prediction accuracy improvement occurred in prediction group 

with a combination of 𝑘2𝑜𝑝  identification and 𝑘2𝑒𝑛𝑑 

prediction, with the lowest median error of 1.50cmH2O. 

Assessing only clinically relevant ΔPEEP = 2-6cmH2O (1-3 

prediction steps), Table 1 shows the PIP prediction outcome 

for ΔPEEP = 2-12cmH2O and ΔPEEP = 2-6cmH2O across 3 

combinations, where 𝑘2𝑜𝑝 with 𝑘2𝑒𝑛𝑑 still yields the highest 

accuracy. 

Table 1 - PIP prediction errors presented in yielding R2, median 

error, and IQR range (cmH2O) for 1-6 prediction steps further 

( 𝚫 PEEP = 2-12cmH2O) and 1-3 prediction steps further 

(𝚫PEEP = 2-6cmH2O). 

 

 

Figure 3  The CDF plot for absolute PIP prediction errors (dash line) 

without 𝑘2𝑒𝑛𝑑 , (dotted line) 𝑘2𝑠𝑝 , and (solid line) 𝑘2𝑜𝑝  with 

𝑘2𝑒𝑛𝑑 function for for 623 cases (ΔPEEP = 2-12cmH2O). 

Boxplots for absolute PIP prediction errors for the 3 

combinations of elastances are presented in Figure 4. Using the 

𝑘2𝑒𝑛𝑑 function results in fewer and smaller outliers in all 7 

PIP prediction 

outcome 

Without 

𝒌𝟐𝒆𝒏𝒅 

With 𝒌𝟐𝒆𝒏𝒅 

𝒌𝟐𝒔𝒑 𝒌𝟐𝒐𝒑 

1-6 steps 623 prediction cases 

R2 0.82 0.87 0.90 

90th % error 4.76 4.43 3.95 

median 

[IQR] 

1.80 

[0.90 3.14] 

1.76 

[0.78 3.11] 

1.50 

[0.69 2.55] 

1-3 steps 356 prediction cases 

R2 0.88 0.90 0.93 

90th % error 3.84 3.56 2.93 

median 

[IQR] 

1.47 

[0.75 2.56] 

1.38 

[0.58 2.54] 

1.19 

[0.48 1.99] 



baseline PEEP levels, with the lowest median error of 

1.50cmH2O, in predictions with 𝑘2𝑜𝑝  and 𝑘2𝑒𝑛𝑑 . Overall, 

90% of PIP prediction errors are within 4.76cmH2O, 

4.42cmH2O, and 3.95cmH2O in sequence. Figures 3-4 show 

the novel added 𝑘2𝑒𝑛𝑑 prediction presented captures possible 

over-distension and barotrauma in VCV patients, especially 

with 𝑘2𝑜𝑝 identification.  

(a) Without 𝑘2𝑒𝑛𝑑 prediction 

(b) With 𝑘2𝑒𝑛𝑑 prediction (𝑘2𝑠𝑝) 

(c) With 𝑘2𝑒𝑛𝑑 prediction (𝑘2𝑜𝑝) 

Figure 4  Boxplots for PIP prediction errors over 7 baseline PEEPs 

for predictions (a) without 𝑘2𝑒𝑛𝑑, (b) 𝑘2𝑠𝑝 with 𝑘2𝑒𝑛𝑑, and (c) 

𝑘2𝑜𝑝 with 𝑘2𝑒𝑛𝑑. 

4. DISCUSSION 

As in prior works (Jonson et al., 1999; Sundaresan & Chase, 

2012; Zhou et al., 2021), the segment of the P-V loop between 

the lower inflection point (LIP) and upper inflection point 

(UIP) is treated as linear, while the segment above UIP until 

the end of inspiration (𝑘2𝑒𝑛𝑑 ) is specially identified as a 

separate linear segment in this approach which is treated as 

curvilinear and constant over PEEP in (Jonson et al., 1999) and 

not considered in other works (Sun et al., 2020; Sundaresan & 

Chase, 2012). UIP is considered as an upper limit before 

distension has been approximated in clinical studies (Kárason 

et al., 2001; Maggiore et al., 2003; Stenqvist & Odenstedt, 

2007), but this study is the first model-based effort to quantify 

and to predict distension. Although two different 𝑘2  and 

𝑘2𝑒𝑛𝑑 identification methods have been studied in (Fisher et 

al., 1988; Jonson et al., 1999) to simulate lung mechanics and 

discussed the correspondence with over-distension. Neither 

was model-based and neither included prediction or compared 

the efficiency for these two methods. 

After identification, the evolution of 𝑘2  and 𝑘2𝑒𝑛𝑑 , are 

predicted using (2)-(6), where prediction accuracy is the key 

to clinical utility in guiding MV (Chase et al., 2018; Morton et 

al., 2019a). Identifying and predicting 𝑘2𝑒𝑛𝑑 is a novel model 

capability and a key feature of this approach as it directly 

captures potential barotrauma in VCV and over-distension and 

thus the risk of VILI. The amount of over-distension is a 

critical factor in VCV care, as recruiting more lung when over-

distension occurs also means healthy lung units may be 

damaged (Gomez-Laberge et al., 2012; Vieira et al., 1998). 

Even with a similar rate of 𝑘2 changes from baseline PEEP to 

a much higher PEEP level, the amount of distension can be 

distinct from patient to patient. For example, while the ratio of 

the change in 𝑘2𝑜𝑝 is both ~1.60 for Patients 9 and 14 (both 

from prediction at PEEP = 18 from 6cmH2O), the amount of 

distension over pressure can be distinct from 2.75cmH2O to 

0.03cmH2O, respectively. Thus, distension and 𝑘2𝑒𝑛𝑑 can be 

even more patient-specific than the recruitment elastance, 𝑘2, 

but provide significant new lung mechanics insight to optimise 

VCV, while also helping reduce the risk of VILI. Since 𝑘2𝑒𝑛𝑑 

evolution is assumed to be correlated with 𝑘2 in this approach, 

the 𝑘2 identification procedure choice is also of value. 

Some lung imaging methods, such as computed tomography 

scans, are able to identify alveoli recruitment and distension 

during clinical treatment (Cereda et al., 2013; Fumagalli et al., 

2019). However, they are typically invasive and costly. 

Equally, regardless of the availability and the requirement of 

additional devices, none of these imaging methods enable 

prediction of over-distension based on images at a single PEEP 

level, reinforcing the potential clinical utility of a model-based 

digital twin or virtual patient approach (Chase et al., 2018) as 

presented here. 

Overall, PIP prediction errors with proposed 𝑘2𝑒𝑛𝑑 function 

are improved with less outliers for 𝑘2𝑠𝑝  combination and 

overall lower errors for 𝑘2𝑜𝑝  combination, as shown in 

Figures 3-4. Furthermore, the median error tends to be higher 

as baseline PEEP increases in predictions without 𝑘2𝑒𝑛𝑑 , 

while the tendency is decrease in predictions with proposed 

𝑘2𝑒𝑛𝑑 function, whether 𝑘2𝑠𝑝 or 𝑘2𝑜𝑝. Although the overall 

error range is similar in predictions without 𝑘2𝑒𝑛𝑑 and 𝑘2𝑠𝑝 

with 𝑘2𝑒𝑛𝑑 , overshooting bias, which can lead to a more 

conservative clinical decision, is 25.4% and 68.7%, 

respectively (60.8% in 𝑘2𝑜𝑝 predictions). Thus, added 𝑘2𝑒𝑛𝑑 

function still shows a clinical relevant benefit.  



Figure 4 shows using the same prediction procedure with 

𝑘2𝑒𝑛𝑑 prediction, 𝑘2𝑠𝑝 prediction accuracy at baseline PEEP 

= 4-6cmH2O slightly exceeds that of 𝑘2𝑜𝑝. However, the large 

errors in 𝑘2𝑜𝑝 and 𝑘2𝑠𝑝 prediction all occurred in Patient 16, 

and at higher PEEP changes. Patient 16 is the only patient in 

the McREM trial with an extremely low P/F ratio = 75, while 

all others are all above 140. A P/F ratio lower than 100 can be 

the indicator of very severe ARDS and is a predictor of 

mortality (Adams et al., 2020; Force*, 2012). Thus, this patient 

has much worse pulmonary condition compared to the other 

17 McREM patients, many of whom also meet broad less 

severe ARDS definitions (The ARDS Definition Task Force, 

2012). If this patient is excluded, the 90th error falls to 

3.88cmH2O and 4.34cmH2O, respectively. For prediction 

under ΔPEEP = 2-6cmH2O, it decreases to 2.87cmH2O and 

3.46cmH2O. 

The newly presented 𝑘2𝑒𝑛𝑑  function and prediction of its 

evolution as PEEP changes significantly improve the overall 

prediction performance for both 𝑘2  identification methods, 

even for a patient with much worse lung condition (P/F<100), 

which shows the importance of including a separate 𝑘2𝑒𝑛𝑑 

prediction to capture over distension, and offers a promising, 

clinically useful prediction method, particularly at higher 

PEEP levels where peak pressures will be high enough for 

distension to be likely.  

Moreover, it presents the difference between two 𝑘2 

identification methods. While the 𝑘2𝑠𝑝  might be more 

intuitive, the overlapped 𝑘2𝑜𝑝  yields an overall better 

performance in this approach, which may has more 

mathematical significance for modelling. However, these 

results may limit to the prediction function efficiency, patient 

number, MV modes, and other possible factors. 

Overall, prediction performance accessed across 18 ventilated 

patients at a wide range of different baseline PEEP levels 

(from 0 to 12cmH2O) with ΔPEEP prediction intervals up to 

12cmH2O. While being effective and reducing modelling 

effort, the overall outcome shows the physiological relevant 

basis function sets offer the possibility for accurate and simpler 

lung mechanics prediction, especially over clinically realistic 

ΔPEEP=2-6cmH2O intervals. 

5. CONCLUSIONS 

In conclusion, this study presents an extended and more 

accurate virtual patient model for volume controlled 

ventilation, including novel terms to capture and predict the 

clinically important risk of over-distension and thus the risk of 

VILI. The yielding difference by elastance identification 

methods for studied pilot trial are also discussed. It presents 

the promising ability of physiologically relevant basis 

functions for lung mechanics prediction at a single baseline 

PEEP breath and novel insights for elastance identification 

strategy. More clinical data are still required to further validate 

this MV virtual patient modelling methodology to personalise 

and optimise MV treatment. 
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