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Abstract: A Moving Horizon Estimator (MHE) based Nonlinear Model Predictive Controller
(NMPC) was designed for an impulsive minimal tumor growth model. The estimator computes
the time-varying model parameters using mean square error with parameter deviation penaliza-
tion and provides state estimations for the controller. The controller computes optimal doses for
non-equidistant, fixed time instants while constraining the administered drug dose. Tuning of
the MHE was based on experimental time series measurements, while for the NMPC a virtual
population was generated. The robustness of the combined approach was tested in silico on a
virtual population, where the simulation was tailored to a real experimental scenario.
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1. INTRODUCTION

Chemotherapy is one of the most efficient ways to deal
with cancerous diseases in everyday clinical practice, es-
pecially for metastatic tumors. Healthcare professionals
use empirical protocols to determine the course of therapy
for a given patient. It was conjectured early on that by
employing mathematical models these treatment protocols
can be optimized, which can alleviate the side effects of
chemotherapy. Therefore, in the past decades, a vast effort
was put into the development of mathematical models
and algorithms that can accurately compute these optimal
protocols, as it was indicated in the reviews by Sbeity and
Younes (2015) and Shi et al. (2011).

A remarkable aspect of the optimized therapies could be
the prolonged effectiveness of a chemotherapeutic agent
before drug resistance occurs in the patient. During con-
ventional therapy, a maximum tolerable dose (MTD) is
given to the patient with a couple of weeks of duration in
between therapeutic sessions. One issue is that the therapy
frequently causes cell mutations in the tumor such that
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they render the drug ineffective. It is theorized that by
applying a low dose therapy with more frequent adminis-
tration sessions, which is called metronomic therapy, the
onset of drug resistance could be delayed (Carrère (2017)).

Our goal is to implement a model-based algorithm in the
context of metronomic therapy which will be verified using
mice experiments afterward. The algorithm is based on a
simple reaction kinetics model which was established in
Drexler et al. (2020) and was fitted to experimental data
using nonlinear mixed-effects modeling. One limitation of
the model is that it does not incorporate the time-varying
nature of the tumor cell population in its parameters
and assumes them to be constants. In our work, we aim
to overcome this issue by online estimating a subset of
the model parameters using Moving Horizon Estimation
(MHE), based on Siket et al. (2020). This estimator is
combined with a Nonlinear Model Predictive Controller
(NMPC) which computes the optimal treatment protocol,
adapted from Czakó et al. (2020). In our setting, we
assume that the therapy days are given in advance and
the administrations are carried out impulsively. Similar ap-
proaches can be found in Chen et al. (2012) and Belfo and
Lemos (2021). We also constrain the maximum amount
both for a single dose and for a given time frame so that
cumulative toxicity can be minimized. The parameters of
the algorithm were tuned using the experimental data
from Füredi et al. (2017), which is also utilized for the
generation of a virtual population for our simulation study.

In Section 2, we recall the tumor model used in our
study and explain its terms briefly. In Section 3, the
algorithm is introduced with a separate exposition on
the MHE and the NMPC. In Section 4, we describe the



tuning of the algorithms and show the stability of the
combined framework on virtual populations. Conclusions
and directions for further research can be found in Section
5.

2. TUMOR GROWTH MODEL

The tumor growth model was proposed in Drexler et al.
(2020) and consists of four differential equations

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2

ẋ3 = −(c+ k1)x3 + k2x4

ẋ4 = k1x3 − k2x4

(1)

where x1 is the living tumor volume [mm3], x2 is the
dead tumor volume [mm3], x3 is the drug level in the
central compartment [mg/kg], and x4 is the drug level
in the peripheral compartment [mg/kg]. The output of
the system, which is the complete tumor volume, is given
by y = x1 + x2. The underlying model represents a
set of impulsive differential equations, where the drug
is administered under an infinitesimal time instant into
the subject. We denote the time of administrations with
ti, i ∈ N0 with t0 < t1 < · · · < ti < ti+1 < . . . ,
which constraints the system dynamics on the intervals
(t0, t1], (t1, t2], . . . , (ti, ti+1], . . . with the rule

x(t+i ) = x(t−i ) + (0 0 1 0)>ui (2)

where ui is the amount of drug injected into the subject at
time ti. The initial condition of the system is often given as
x(t0) = (x0, 0, u0, 0)> with a strictly positive initial living
tumor volume x0 > 0 and arbitrary u0 ≥ 0. One can
intuitively think about this impulsive system as solving
an initial value problem at the beginning of each interval
t+i , where the initial values are the state of the system at
the end of the previous interval, t−i , modified by adding ui
amount of drug to x3(t−i ).

3. CONTROL ALGORITHM

As it was pointed out in the introduction, our algorithm
consists of an estimator and a controller. The MHE can
online estimate the parameters of the model and provide
a full state estimate to the controller. The controller then
uses this information to predict the future evolution of
the system from which, an optimal dosage sequence is
calculated.

3.1 Moving Horizon Estimation

MHE is an optimization based state and parameter esti-
mation algorithm. During each measurement update, the
algorithm minimizes a cost function on a sliding window,
which contains a number of previous measurements. It
can be thought of as a generalization of the Kalman filter
with the additional benefit that it can incorporate various
constraints during the optimization.

In this particular case, the cost function is defined to
be the sum of two terms which are trajectory error and
parameter difference. The former one is the mean-squared

error between the measured and estimated volumes in the
current time step. The latter one is the difference between
the optimized model parameters and a nominal parameter
set, which is the fixed effect (θ) of the model, contained
in Table 1. This term is beneficial concerning the identifi-
ability properties of the system since it limits the number
of possible solutions. Only the most sensitive parameters,
p̂ = (a, b, n, w)>, of the model (1) are estimated; for the
remaining parameters their nominal value is used. The cost
function at time ti is defined as

min
p̂ ∈ R4

JM (p̂; ti) =

i∑
k=i−M

∆ŷ2k + d

4∑
l=1

(
∆pl
pl

)2

s.t. p ∈ [p, p̄],

Ap ≤ ci,

(3)

where M > 0 is the length of the horizon, d > 0 is
a scalar tuning parameter, ∆ŷk = ỹk − ŷk where ỹk is
the measured tumor volume, ŷk is the estimated volume,
which is the output from the solution (x̂(t), t ∈ (ti−M , ti])
of model (1) at time tk, ∆pl = pl − p̂l where pl ∈ p
is the l-th element of the nominal parameter vector p,
and p̂l ∈ p̂ is the parameter vector which we optimize
over. In the simplest case where no measurement error
is introduced ỹk = yk. To obtain the solution x̂(t), the
model is integrated from the initial condition x̂(t+i−M )

obtained from rule (2) with x̂(t+0 ) = (x0, 0, u0, 0)>. As
such, we integrate the model numerically with the optimal
parameter set at each measurement time instant on the
full horizon and save the endpoint value of the estimate
for the next optimization task at the new measurement.

Each parameter is constrained to be in the box defined by

p = (0 0.01 0.1 0)
>

and p̄ = (2 1 1 1)
>

. An additional
adaptive linear constraint is used to avoid unstable param-
eter sets if possible. The theoretical possibility of tumor
volume decrease upon administration can be guaranteed
(see Drexler et al. (2018)) if the parameters fulfil that
a − b − n < 0 which entails A = (1 −1 −1 0). Under
ideal conditions ci = 0, however, if the measured volume
is more than 20% larger than the estimated, the constraint
is loosened in an iterative way by incrementing ci with 0.1
and restarting the optimization. The adaptive constraint
guarantees stable parameter set under normal conditions,
and provides better estimation when abrupt changes occur
in the physiology of the tumor.

3.2 Nonlinear Model Predictive Control

The NMPC takes the solution p̂ of problem (3) and
the estimated states x̂(t) of system (1) and predicts its
evolution on the (not necessary equidistant) intervals,
(ti, ti+1], i ∈ {0, . . . , N} ⊂ N0 with N being the number
of prediction intervals. To each starting point of these
intervals an input ui is assigned, according to rule (2),
which will be the subject of the optimization. One can
think about this prediction as the continuation of the
solution x̂(t) from the MHE with the computed vector
p̂, and parametrized by each input signal. The stage cost
is defined as

`(yi, ui) = q

∫ ti+1

ti

(
yi − yref
ỹ0

)2

dt+ r

(
ui
ūi

)2

, (4)



Fig. 1. Schematic diagram of the proposed approach.
The evolution of the tumor volume (black line) also
represents one growth-shrink cycle in Section 4.1

where q and r are scalar control parameters, the output
yi is defined on the interval (ti, ti+1] by the solution of
model (1), yref is the reference tumor volume, ỹ0 is the
measured tumor volume at the beginning of the treatment,
ui is the term in (2), and ūi is the maximum admissible
drug in a single administration. In practice, the model is
solved numerically while the integral is approximated by
the trapezoidal rule. The optimization problem at time tk
can now be formulated as

min
u ∈ RN

JN (u; ti) =

N−1∑
k=0

`(yi+k, ui+k)

s.t. u ∈ [0, ū],

uc ∈ [0, ūc],

(5)

where u = (ui, ui+1, . . . ui+N−1) is the optimal input
sequence where each element is constrained to lie in the
interval 0 ≤ ui+k ≤ ū, which entails ū = ū1 (where 1
is an N dimensional column vector with all of its entries
being equal to 1), and the second group of constraints
0 ≤ uci+k ≤ ūc denote the cumulative dosage associated
with each ui+k, from which uc = ūc1. The cumulative
dosage uci is defined here as the sum of doses in the past
10 days,

uci =
∑
J

uj , J := { j | ti − 10 ≤ tj ≤ ti }. (6)

According to Füredi et al. (2017) the maximal tolerable
dose (MTD) of PLD in mice is 8 mg/kg which could be
repeated in every 10 days without triggering an irreversible
weight loss. To define a safe cummulated dose threshold in
our method, the maximum given PLD of 16 [mg/kg] was
lowered to ūci = 14 [mg/kg] in 10 days to minimize the
possibility of severe systemic toxicity. The upper bound
for each dose was set to ūi = 6 [mg/kg] and is smaller
than the 8 [mg/kg] which is the MTD that is given to a
subject during a conventional course of therapy.

In Figure 1, one can see the combined approach graphi-
cally. The black line is the evolution of the tumor volume
(y(t)), black circles correspond to noisy measurements
(ỹk), turquoise circles are estimates by the MHE (ŷk), grey
lines are the optimal administrations (u∗k) and the carmine

line is the prediction of the tumor evolution. Note that the
prediction is a continuation of the MHE estimate ŷk and
its shape is determined by the estimated parameters p̂ and
the optimal input sequence u.

4. NUMERICAL EXPERIMENTS

In order to tune the parameters of our algorithm and
assess its performance, we conducted several numerical
simulations. While there exists no separation principle for
nonlinear systems, we chose to tune the observer and the
controller separately to mitigate the computational burden
of the tuning procedure. To obtain realistic parameters,
we used the experimental data from Füredi et al. (2017).
The experimental data contain 10 time series of Murine
breast cancer evolution, treated with Pegylated Liposomal
Doxorubicin (PLD). In the case of the MHE, it was
previously shown in Siket et al. (2020), that satisfying
performance can be achieved with a windowM = 14. Since
in this paper we used a different nominal parameter set, a
value of d = 20 leads to similar results. For the NMPC, a
virtual population was generated by fitting the time series
to the model (1), which we describe here in detail. The
combined algorithm is then tested on a different virtual
population with added noise to incorporate the effect of
real measurements.

4.1 Virtual population generation

For tuning the control parameters q and r in (4), a virtual
population was generated, which represents a number of
different parameter combinations for the model (1). To
obtain a realistic population, we fitted the model us-
ing the Stochastic Approximation Expectation Maximiza-
tion (SAEM) algorithm to experimental data, similar to
Drexler et al. (2020). In this paper, instead of fitting the
parameters of the model to the whole time series, we cut
the time series into multiple intervals empirically, each
containing one growth-shrink cycle (similar to the black
curve in Figure 1). This means that each cycle begins with
tumor growth which is then subject to injection treatment
and then followed by a shrink to a quasi-stationary value.
An example can be seen in Figure 2, where the grey vertical
lines are the cuts. We also excluded resistant artifacts,
where the injection does not lead to remission. The reason
behind cutting the time series is that the tumor cell pop-
ulation is time-varying in nature, which is not reflected by
constant model parameters. By cutting the time series, we
implicitly assume that the model parameters are piecewise
constant during each cycle, which leads to better fit and
computationally more tractable than fitting time-varying
functions for each full time series. In order to perform the
fit, we used sbiofitmixed routine with nlmefitsa option
in MATLAB 2021a and the scattersearch algorithm of
sbiofit to calculate a proper initial value for the mixed-
effects fit. We have also used the identified pharmacoki-
netic parameters from Drexler et al. (2020). The tumor
volume was approximated in this article with

y =
π

3
(lw)(3/2), (7)

where l is the length, w is the width of the tumor. This
approximation is required since in the experiment they
measure only the length and the width of the tumor with a
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Fig. 2. An example cut of the time series PLD 6 from
Füredi et al. (2017). Between each grey line a single
growth-shrink cycle is contained which is assumed to
be independent from the rest of the time series.

caliper. The form of the equation is a proper choice for the
approximation of caliper measurements, as it was shown
in Sápi et al. (2015).

The estimated fixed effects (θ∗) are contained in Table
1 with their standard errors, and random effect variance
coefficients. For c and k1, the low values of the random
effects can be attributed to the fact that we initialized their
values from the results of the previous pharmacokinetic
parameter estimation.

We assumed that one parameter sample is from the normal
distribution θ∗i ∼ N (θ∗, Σ∗) , where θ∗i is the generated
parameter set, θ∗ is the estimated fixed effects in Table
1., and Σ∗ is the random effect covariance matrix, which
is in our case a diagonal matrix with elements from the
last column in Table 1. Because the values in Table 1 are
log-transformed, one must back-transform the calculated
parameters θ∗i -s to obtain their values in the original
space i.e. θi = exp(θ∗i ). For each sample we draw the
corresponding initial value from the uniform distribution
x0 ∼ U(lx, ux), where the parameter lx, ux corresponds
to the smallest and largest tumor volume where the first
dose was applied in the growth-shrink cycles. We further
generated statistics about the cycles which we used to
impose certain conditions during the generation such that
the generated tumors reflects real dynamics. Our first
statistics was the mean duration of the cycles t̄r = 26.08
[day] with their standard deviation σr = 11.13 [day]
and the mean value of the difference between the peak
tumor volume and the starting volume where the dose was
applied, denoted by ȳp = 1057.42 [mm3] with standard
deviation σp = 614.45 [mm3].

During the generation, we imposed three conditions that
each θi-s must obey. The first condition is that for each
θi the untreated tumor should grow, i.e., a − n > 0. Our
second condition filters those parameter sets for which the
tumor is resistant and grows continuously for an initial 8
[mg/kg] dose, i.e., it filters out the cases for which a−n−
b ≥ 0. The last condition restricts the maximum deviation
of the tumor volume between the volume at the injection

Table 1. Log-transformed parameter values of
the identification.

Parameter
Fixed
effect

Standard
errors

Random effect
covariance

a −0.84 0.21 0.087
b −0.2 0.17 0.251
n −2.03 0.65 0.133
w −2.44 0.17 0.417

ED50 −6.71 32.7 0.008
c 0.46 3.19 5.9 · 10−8

k1 1.46 58.8 2.38 · 10−8

k2 1.42 49.96 0.228
x0 4.08 0.35 1.78

(u0 = 8 [mg/kg]) and the peak tumor volume to yp ± σp.
This entails that the generated parameter sets lead to non-
resistant tumors and they also share similar traits to their
real-life counterparts. Using these restrictions we generate
a virtual population Vr with 100 elements that will be used
for robustness analysis. We have also generated a different
population Vo with a condition, that each tumor should
shrink under 10 [mm3] between tr ± σr, from a generated
initial condition x0 with initial dose u0 = 8 [mg/kg]. The
role of Vo is to provide species for which a single dose can
reduce the tumor completely so that we can easily compare
the effectiveness of therapies attributed to different control
parameters with the MTD injection.

4.2 NMPC tuning

For the tuning of the controller, we assumed that the
administrations take place on Mondays and Thursdays.
Because PLD treatment is given through the tail vein
of the animal, a minimum of 3 days recovery is required
between drug injections. Technically, the frequency of tail
vein administration should be limited to a minimum to
avoid unnecessary stress (Hedrich and Bullock (2004))
and, additionally, the PLD treatment could cause inflam-
mation and necrosis if administered more frequently. In
practice, this means that the intervals of the optimization
are defined recursively as

(tk, tk + d], d =

{
3, if k is even

4, otherwise

tk+1 = tk + d,

t0 = ti, k ∈ {0, . . . , N} ⊂ N0

(8)

with an optimization variable ui at each tk. The considered
time span of the simulations was 40 days for each sample,
starting with t0 = 0. During the tuning, we have presumed
that the model parameters are known precisely, and we
have access to full state measurement so that we can
omit the use of MHE, which alleviates the computational
burden of the tuning procedure. Our initial approach was
to utilize a simple grid search on the domain q × r where
q, r ∈ 10i, i ∈ {−7, . . . , 3} with N = 3 which is two weeks
of prediction. The setpoint was set to yref = 1, because
zero volume can not be attained with the model. During
our initial trials, we used fmincon to solve (5), however
the discontinuous nature of the impulse treatment lead
to poor convergence properties. By using the derivative-
free, global optimizer patternsearch, the problem could
be tackled efficiently.

The initial grid search revealed two important information.
Using smaller values for q, r leads to better convergence
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Fig. 3. Pareto front of the grid search for q = 1 and varying
r values

properties in each of the virtual patients. It could also be
seen from the simulations, that the distance between q, r
on logarithmic scale determines the quality of the solu-
tions. We calculated for each q, r value the total amount
of drug administered for the 100 patients in Vo and the sum
of the tracking error at the end of the simulation interval
(denoted by usum and esum respectively). Surprisingly, for
each q, r which has the same relative distance lead to
essentially the same usum and esum values. As such, we
show the Pareto front of these two metrics in Figure 3.
for q = 1. One can see that by decreasing the value of
r, the total administered drug increases while the tracking
error shrinks. It can be seen that the optimal choice, which
results in the best trade off between the two metrics,
is r = 1, for which usum = 155, esum = 176 which is
significantly better than the single 8 [mg/kg] dose case
with usum = 800, esum = 414.

We used the robust dataset Vr to validate the obtained
controller parameters with a fixed q = 1 and r ∈ 10i, i ∈
{−1, . . . , 2}. The uncontrolled dataset with a single 8
[mg/kg] dose at the beginning can be seen in Figure 5.
Here, we simulated each patient to 350 days to ensure
that they can be controlled to the setpoint. While the con-
trollers were able to shrink each tumor, the best tracking
error was obtained by using r = 0.1, which is in accordance
with our previous result. As such, we chose q = 1 with
r = 0.1 to achieve a more aggressive response from the
controller to eradicate the tumor as fast as possible from
the subject while retaining the economic drug administra-
tion. One last issue is that the tracking error at the end of
the treatment is still quite large with esum = 67 because
the controller is not tracking the setpoint correctly in some
cases. By increasing the prediction horizon to N = 8, the
stability of the scheme was improved to esum ≈ 0.

4.3 Simulated measurement noise

Measurement noise has been characterized based on the
complete time series. During the experiments, the cross-
section of the tumor was measured using calipers which
combined with (7) approximates the tumor volume on a
given day. Since the approximation is a rough estimate,
because the tumor, in reality, is not a perfect ellipsoid, one
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Fig. 4. Fitted noise model and the comparison of the dis-
tributions. Numbers (1-5) corresponds to the shaded
regions, in which the standard deviation is calculated.

must include measurement noise in the model. To quantify
the noise present in the time-series data, a lowpass Butter-
worth filter was applied in a zero-phase setting. The noise
is approximated as the difference between the raw, and
the filtered time series. We created a histogram from these
error terms with five bins (containing an approximately
equal number of measurements), where we calculated their
standard deviations. We found that the standard deviation
of the noise can be accurately approximated by an affine
function of the volume, which can be seen in Figure 4.
The generated noise is assumed to be an additive Gaussian
process in the form of

σ(y) = 0.1 + 12.4y,

ν(y) ∼ N (0, σ2(y)), (9)

ỹ = y + ν(y),

where ỹ is the measured tumor volume and y is the output
of the model given in (1).

4.4 Verification of the algorithm

The combined MHE-NMPC algorithm is verified on a
virtual population generated with the same conditions as
Vr but containing different subjects. We assumed that
during a week five measurements are taken, from Monday
to Friday, and the administrations are applied as described
in (8). The measurements are also corrupted with the noise
as described earlier and each parameter of the algorithm
remains the same as above mentioned. For the MHE,
problem (3) is solved using fmincon from two initial
points to improve convergence. One of them is the nominal
parameter set while the other is the resulting parameters
of the previous optimization. Problem (5), corresponding
to the NMPC, is solved with the global optimizer as
mentioned earlier.

The results of the simulation can be seen in Figure 6. Each
tumor shrinks down to the neighborhood of the setpoint
with varying speed. The total drug used was umax = 1992
which means that on average a single subject received
20 [mg/kg] PLD during the simulation interval. Because
measurement errors are introduced, it is not obvious to
determine whether a true setpoint tracking was achieved in
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Fig. 5. Robust virtual population Vr subject to a single 8
[mg/kg] administration on the first day.
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Fig. 6. The measured outputs of each virtual patients
subject to the algorithmic treatment

this case. At first glance, the MHE provides close estimates
to the actual measurements and leads to less variation
in each upcoming measurement. However, the fact that
the parameter estimates from the MHE vary significantly
in many subjects could easily mean that the computed
therapy, with these parameters, just aggressive enough to
shrink the tumor size completely, but unable to provide
a realistic setpoint tracking. This could be attributed to
the fact that the model introduces several discontinuities
because of its impulsive nature which can not be properly
handled by the gradient-based solver. Moreover, the use of
the global optimizer, as in the case of the NMPC, did not
improve the convergence properties of the MHE.

5. CONCLUSION

A combined MHE-NMPC algorithm was presented which
was tuned based on a generated virtual population. These
populations, in conjunction with the measurement noise
model, could provide a useful basis for further numerical
studies on the improvements of the current algorithm.
It can be noted that the algorithm in simulation can

shrink tumors with a high degree of variability in their
parameters. Further research should focus on improving
the stability of the MHE estimates and understanding
the setpoint tracking capabilities of the algorithm in more
detail.
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D., and Sápi, Z. (2015). Tumor volume estimation
and quasi-continuous administration for most effective
bevacizumab therapy. PLOS ONE, 10(11), e0142190.
doi:10.1371/journal.pone.0142190.

Sbeity, H. and Younes, R. (2015). Review of optimization
methods for cancer chemotherapy treatment planning.
Journal of Computer Science & Systems Biology, 8(2).
doi:10.4172/jcsb.1000173.

Shi, J., Alagoz, O., Erenay, F.S., and Su, Q. (2011). A
survey of optimization models on cancer chemotherapy
treatment planning. Annals of Operations Research,
221(1), 331–356. doi:10.1007/s10479-011-0869-4.

Siket, M., Eigner, G., and Kovács, L. (2020). Sensitiv-
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