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University, H-1034, Budapest, Bécsi street 96/B.
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Abstract: Receding Horizon Control (RHC), also known as Model Predictive Control (MPC)
is one of the most intensively researched areas of control algorithms applied in the artificial pan-
creas concept. Nevertheless, MPC algorithms have not yet been implemented in commercially
available insulin pumps, mainly due to their high computational demand, their less robust
nature, and their instability on account of model’s uncertainty. In this paper, we present a
robust adjustable RHC. The proposed RHC controller was tested under known food inputs
by applying a high degree of parameter uncertainty to the virtual patient implemented in the
controller to test the robustness of the architecture. A particle swarm optimization method
was applied to tune the controller. The so-called identifiable virtual patient (IVP) model was
used in the tests, supplemented with food absorption and continuous glucose monitoring sensor
model. The implementation was performed in Julia. The results showed that the proposed RHC
is sufficiently robust under high food intake and parameter uncertainty.

Keywords: Model predictive control of hybrid systems, Optimal control of hybrid systems,
Control in system biology, Nonlinear predictive control, Control of physiological and clinical
variables, Type 1 Diabetes Mellitus, Receding horizon control

1. INTRODUCTION

The most promising direction in the management of type
1 diabetes mellitus (T1DM) is the artificial pancreas
(AP) concept, where an insulin delivery unit (insulin
pump - IP) automatically doses the insulin based on
the measured glucose values (provided by eg. continuous
glucose monitoring sensor - CGMS) based on advanced
control algorithms (Shah et al. (2014)).

The cost function based model based predictive control is a
widely applied technique in diabetes management (Doyle
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et al. (2014)). Many interesting solutions for automated
insulin delivery involve a sort of RHC architecture in
the blood glucose (BG) management. The main benefit
of the method is that multiple goals can be defined
as ”targets” into the optimization process. The most
important metrics are the avoidance of hypoglycemia
(BG lower than 70 mg/dL) and increasing the Time-in-
Range (TIR). TIR determines how much time a patient
spends in the euglycemic range (between 70 mg/dL and
180 mg/dL) during the time when the controller was
online or in general sense, while the CGM was worn
(Wright et al. (2020)). Many promising MPC algorithms
have been recently reported where hypoglycemia has been
minimized but also with good TIR (BG spends more
than 85% in euglycemic range). Integral MPC (IMPC)
is able to operate with acceptable TIR in the presence
of disturbances (e.g. from unannounced meal) and model
uncertainties (Incremona et al. (2018)). Impulsive zone
MPC (IZMPC) aims to provide similar control action like
the natural insulin regulation in the β-cells of the pancreas
(González et al. (2020)). Other interesting studies showed
capabilities which could be embedded into an MPC kind
controller (Colmegna et al. (2021)).



It has to be noted that despite the many good applications,
MPC based controllers are still not present in the daily
practice in insulin pumps as the main control algorithm.
Albeit, the new products do have well established predic-
tive features e.g. to estimate the glucose and insulin levels
in blood (Breton and Kovatchev (2021)). Clinical studies
reported good performance of Omnipod MPC algorithm
from both TIR and hypoglycemia points of view (Forlenza
et al. (2019)). Two still ongoing clinical study investigate
the safety and other aspects of Omnipod MPC – the re-
cent reports introduced good intermediate results (Castle
(2021)). Despite the fact that MPC based controllers have
not been used in insulin pumps yet, the research directions
show that they will and in the near future.

Our group successfully developed robust control algo-
rithms for T1DM by using different techniques e.g. Ko-
vacs et al. (2019) in which a popular tensor product
based approach has been used (Hedrea et al. (2021)). In
this study, we focused on developing a receding horizon
controller (RHC) which can overachieve the performance
and stability of classical MPC algorithms (Kwon and
Han (2006)). The heuristic “RHC” is an optimal control
strategy invented in the late seventies of the last century
(Richalet et al. (1978)). It approximates the constant time
variable over a distinct grid. In order to provide smooth
Euler integration of the state variable of the controlled
system over a finite ”future horizon” the grid should have
a proper resolution. RHC carries out the ”optimisation”
over this horizon in such a way that it compiles a ”cost
function” into a sum of non-negative differentiable contri-
butions connected to the individual restrictions, and min-
imises it, meanwhile it is important to accurately factor in
the controlled system’s dynamic model as a “constraint”.
Modelling imprecisions and not observable external dis-
turbances, which can occur in RHC, are offset by making
only one step forward along the fully calculated horizon
by using the calculated control signal, and initiating the
new horizon from the observed actual state.

2. MATERIALS AND METHODS

2.1 Receding Horizon Controller

The formula that mathematically describes the RHC con-
troller can be written as follows:

min
{x1, ...,xHL}
{u0 ...,uHL−1}

HL−1∑
i=0

J(xi,ui)

subject to
xi+1 − xi

∆t
− f(xi,ui) = 0,

(1)

where {t0, t1 = t0 + ∆t, . . . , tn+1 = tn + ∆t, . . . , tHL}
corresponds to the time grid over the finite future horizon,
HL ∈ N, t0 and tHL are the beginning and the ending time
instants of the horizon, accordingly. Equation for motion
of the system to be controlled is ẋ(t) = f(x(t),u(t)), in
which x(t) ∈ RM is the state variable, u(t) ∈ RK is the
control input, and x0 ≡ x(t0) is the original condition for
the system’s status. If xN (ti) is the nominal trajectory
to be traced, and x(ti) defines the executed trajectory,
a cost function J(x(t),u(t)) can be predetermined in
each moment of the grid. In (1) the numerical estimation
xi+1−xi

∆t ≈ f(xi,ui) is applied.

The nominal trajectory is defined to be a constant 90
[mg/dL] BG concentration. An asymmetric quadratic cost
function is applied, due to short term deviations from the
nominal value poses various threats to the patient. The
asymmetry is taken into account with different δ param-
eters for the hypoglycemic and hyperglycemic ranges as
follows:

J(yi,ui) =
(yN − yi

δ

)2
{
δ = δhyper, if yi ≥ yN

δ = δhypo, otherwise
(2)

In order to find the minimum of J , a ”Gradient Descent
Algorithm” is used: an original point is set to u(1) = 1;
Let u(2) = u(1)− α∇J |u(1) in which 0 < α. At the point
where ‖∇J‖ = 0, the algorithm stops. This point matches
a local minimum. In respect that the grid points i, i+ 1 of
the discretized time approach, over which the estimation
of ”forward differences” for the first order dynamic system
of the estimated model is solved q̇ = f(q, u) (u defines
the control signal). If the state q[i] and the force u[i]
values in grid point i are given, the estimation q[i +
1] ≈ q[i] + f(q[i], u[i])∆t can be applied for the next
grid point. Therefore, with the presumed force components
{u[1], . . . , u[HL−1]} can be filled in over the horizon. If the
”nominal trajectory to be traced” is known beforehand, the
tracking fault components that are produced as the results
of these force components {qN [2] − q[2], . . . , qN [HL] −
q[HL]} can be directly computed and their contribution
to the cost function can be added. In the next step the
cost calculated over the whole horizon can be minimized
by the simple gradient descent method applied for the
independent variables {u[1], . . . , u[HL− 1]}.

Fig. 1. Diagram of the RHC, PSO and virtual patient.

2.2 Tuning of the RHC

The RHC was tuned with the Particle Swarm Optimiza-
tion (PSO) method introduced in Kennedy and Eberhart
(1995) and Shi and Eberhart (1998). The concept of the
algorithm is to create a swarm of particles which move
around in the multidimensional problem space whilst com-
peting and sharing information with each other. Each par-
ticle has a position and a velocity, which can be calculated
as follows:

pj,d = pj,d + vj,d, (3)

vj,d = ωvj,d + c1r1(pbj,d − pj,d) + c2r2(gbd − xj,d), (4)

where the position, velocity and personal best known
position of the jth particle in dimension d are denoted



by pj,d, vj,d and pbj,d. The gbd is the global best known
position among all the particles in dimension d. The ω
is the inertia weight which balances the global search
and local search, c1, c2 are positive acceleration constants,
r1, r2 are random values in the range [0;1]. The fitness
function Ψ , used to evaluate the particles’ position, is
a function of the TIR of all patients, which penalizes
the time spent in hypoglycemia more than the time in
hyperglycemia:

Ψ = TIRhyper + wTIRhypo, (5)

where TIRhypo is the time spent below 70 [mg/dl],
TIRhyper is the time spent above 180 [mg/dl] and w is
a constant bigger than 1. We found that w = 5 is where
the occurrence of hypoglycemic events is best minimised.

The optimized values are further investigated around their
local minimum found by the PSO. Parameter sensitivities
are calculated in order to quantify the dependency of the
tuned controller parameters on the TIR based total cost.
The parameter sensitivities are defined by:

sp =
∆Ψ

∆p
(6)

Spl
=
pl
Ψl
spl
, (7)

Smsqr
p =

√√√√ 1

ns

ns∑
l=1

(Spl
)
2
, (8)

where ∆Ψ = Ψnom. − Ψl is the cost difference observed by
making parameter p different from its nominal value pnom.,
∆p = pnom. − pl. The relative or normalized parameter
sensitivity is denoted by Spl

, pl is the l-th sample from the
total of ns samples. The sensitivity of a given p parameter
can be quantified in different ways (Brun et al. (2001)),
for our purposes we applied the root-mean-square metric
(8).

2.3 Diabetes Patient Model

As a good compromise between complexity and accuracy,
the so-called IVP model is utilized, extended with the sec-
ond order carbohydrate absorption submodel of Hovorka
et al. (2004).

Ġ(t) = −(GEZI + IEFF (t)) ·G(t) + EGP

+
1

τDVG
D2(t),

(9)

İEFF (t) = −p2 · IEFF (t) + p2 · SI · IP (t), (10)

İP (t) = − 1

τ2
· IP (t) +

1

τ2
· ISC(t), (11)

İSC(t) = − 1

τ1
· ISC(t) +

1

τ1CI
· u(t), (12)

Ḋ1(t) = − 1

τD
D1(t) +

1000AgC

MwG
d(t), (13)

Ḋ2(t) = − 1

τD
D2(t) +

1

τD
D1(t), (14)

where G(t) is the blood glucose concentration [mg/dL],
IEFF (t) is insulin effect [min−1], ISC(t) and IP (t) repre-
sent the subcutaneous and plasma insulin concentrations

[µU/mL], respectively. The infused insulin u(t) [µU/min]
serves as the input. The disturbance d(t) [g] (carbohydrate
content of the meal) is considered unknown. Parameters
related to the insulin effect: τ1 and τ2 [min] insulin absorp-
tion time constants, p2 is the kinetic rate for insulin action
[min−1], CI is the insulin clearance [mL/min], SI is the
insulin sensitivity [mL/µU/min]. The endogenous glucose
production is denoted by EGP and GEZI is the glucose
effectiveness at zero insulin level. The meal absorption
is affected by the τD time constant [min], the VG [L]
glucose distribution volume and the Ag [−] carbohydrate
utilization constant. Lastly, C and MwG are conversion
constants.

2.4 Continuous Glucose Monitoring Model

In order to simulate the characteristics of a modern
CGMS, the error model proposed in Vettoretti et al. (2019)
is used. The common method is to use an additional com-
partment, representing the interstitial glucose concentra-
tion, which introduces delay (Huyett et al. (2018)). Besides
the additional compartment, the model of Vettoretti et al.
(2019) uses an uncertainty of calibration and an additive
noise term. The additive noise term v is assumed to be an
autoregressive process of order two, driven by zero-mean
white noise w ∼ N (0, σ2):

˙IG(t) = − 1

τIG
IG(t) +

1

τIG
G(t), (15)

IGs(t) = (a0 + a1t+ a2t
2)IG(t) + b0, (16)

v(t) = α1v(t− Ts) + α2v(t− 2Ts) + w(t), (17)

CGM(t) = IGs(t) + v(t), (18)

where IG is the interstitial glucose concentration, τIG is
the time constant between the blood and the interstitial
compartments. IGs is the interstitial glucose concentration
of the sensor. The uncertainty of the sensor calibration is
taken into account with parameters: a0, a1, a2 and b0. The
autoregressive process is defined by parameters: α1 and α2.

3. RESULTS

The RHC is implemented in Julia language, in Julia
Version 1.6.0. Google Colaboratory was used for the
simulations.

In the controller we utilized an approximate parameter
set created by taking the arithmetic mean of the identi-
fied parameters of Kanderian et al. (2009). The nominal
parameters are summarized in Table 1.

EGP GEZI VG CI
0.95 2.52 · 10−3 21.4 1266.6

τ1 τ2 p2 SI

70.5 44.4 1.13 · 10−2 4.41 · 10−4

Table 1. Approximate parameter values used
in the controller.

The BG trajectories of the virtual patient cohort are
generated by taking samples from a normal distribution
p ∼ (µp, σ

2
p), where µp is the arithmetic mean of param-

eter p, σp := 0.25µp. In other words, a 25% parameter



variability is applied in the virtual patient cohort for all
the parameters. The total simulated horizon was 10 hours
long in which the parameters do not change significantly
according to the literature (Kanderian et al. (2009)). Thus,
we decided to use permanent parameter set in this study.
In our future work with longer horizon we will consider
introducing intraday parameter variation as well. In the
10-hour-long simulated horizon three meals were admin-
istered in the [60, 240, 480] [min] time instances with car-
bohydrate content of [20, 60, 10] [g]. These simulated BG
trajectories were perturbed by the CGMS model (15)-(18)
using the following parameters, based on Vettoretti et al.
(2019): a0 = 0.95, a1 = 0, a2 = 0, b0 = 7.3, α1 = 1.3,
α2 = −0.46, σ = 3.2, Ts = 5 and τIG = 3.1.

The optimized values of the controller parameters are
shown in Figs. 2-5. Note that on these plots cost represents
the total cost associated with a given parameter set of
the controller, simulating the full cohort. The total cost
is defined by (5). In Fig. 2 an optimal horizon length is
found at 32 discrete steps, resulting in a horizon length
of 160 minutes, which correlates well with the effect of a
typical meal. Shorter horizon lengths can cause postponed
hypoglycemia by not taking into account the full effect of
higher insulin administration periods during meal intakes.
Since the applied RHC does not use an offset-free strategy
(Tamayo et al. (2019)) the parameter uncertainty in case of
longer horizons can lead to extended hyperglycemic events.
With the given implementation we experienced increasing
computational cost with longer horizons. Thus, we selected
the best length from the selected control quality properties
(hypoglycemia, TIR) point of view (Fig. 2.

Fig. 2. Fitness function Ψ with respect to HL around its
optimum found by PSO.

Fig. 3. Fitness function Ψ with respect to δhypo around its
optimum found by PSO.

The δhypo parameter (Fig. 3) defines a low penalization
range for deviations from the nominal value in the negative
direction. Since hypoglycemic events are heavily penalized,
and the nominal value is relatively close to the lower bound
of the TIR, the optimized range is narrow. In Fig. 3 the

cost function is flat around the found optimum and non-
convex. In Fig. 7 it can be seen that in the simulated
horizon hyperglycemic events are sparse, making the con-
troller less sensitive to δhypo and the cost function non-
convex. The applied cost function (5) is non-differentiable,
the non-convexity can be further enhanced in the short
hyperglycemic section by the CGMS noise. The results of
the PSO optimization of the δhyper parameter can be seen
in Fig. 4.

Fig. 4. Fitness function Ψ with respect to δhyper around
its optimum found by PSO.

The α parameter defines the general convergence proper-
ties of the gradient descent algorithm. As an upper limit
is defined in the RHC for the number of iterations in each
time step, low α parameters degrade the convergence. High
α values can lead to oscillations around a local optimum
and degrade the convergence as well. A lower total cost is
found with higher values, as a quick convergence occurs to
a neighbourhood of local minimum.

Fig. 5. Fitness function Ψ with respect to α around its
optimum found by PSO.

Sδhyper
SHL Sα Sδhypo

2.0562 1.4774 0.7925 0.1273

Table 2. Calculated parameter sensitivities
around their optimized values.

In Table 2 the parameter sensitivities are shown around
their optimized values. The largest effect on the TIR
metric has the δhyper and HL parameters. This can be
explained by the fact that in the investigated horizon
mainly hyperglycemic events occur. The α parameter is
found to be the third sensitive in the ranking process,
which indicates that relatively large range of α values
does not compromise the convergence of the optimizer in
a great extent. The least sensitive is found to be the δhypo
parameter, since hypoglycemic events are short. In our
further work, further analysis with more patient parameter
variability will be carried out, and the outliers of the cohort
will be investigated.



Fig. 6. Applied cost with respect to the measured BG
concentration, using different combinations of the δ
parameters.

In Fig. 6 the cost function J (2) is shown with respect
to the measured BG concentration. The green dashed line
represents the optimized cost function calculated by the
PSO. The dependency of the δhyper and δhypo parame-
ters are showcased by plotting combinations around the
optimized values. The optimization resulted in a much
stricter policy regarding hypoglycemia compared to hyper-
glycemia. This is an expected behavior, as the lower bound
of the marked TIR zone is much closer to the nominal
value.

Fig. 7. Average blood glucose trajectory during a 10-hours
long simulation.

In Fig. 7 simulated BG trajectories of the generated virtual
patient cohort are shown (left axis). The average trajec-
tory is plotted with a blue line, while the minimum and
maximum values are denoted by green lines. The arrows
indicate the timestamp and amount of the meals (right
axis). Despite the fact that an announced meal scenario is
investigated, due to the higher patient parameter variabil-
ity and the CGMS noise postprandial hyperglycemic and
short hypoglycemic events occurred.

A CGVA plot is provided in Fig. 8, representing the
minimum and maximum values in the simulated horizon.
With the exception of two patients, the investigated cohort
lies in the B regions.

The (mean±standard deviation) percentage time spent
in glucose range 70-180 [mg/dL] of 10 virtual patients
were 95.2±7.9 and 96.1±9.0 with and without CGM
noise, respectively. The percentage time below range were
0.4±0.9 and 0.0±0.0. In this study, we applied only 10
virtual patients, since the purpose of the study was the
development of the controller setup in an environment

Fig. 8. Control variability grid analysis.

where the controller parameters are investigated, and
tuned with an optimization method. During our further
work, larger population and intrapatient variability is
planned to be taken into account.

4. DISCUSSION AND CONCLUSION

In this study our aim was to develop a RHC application
without the usual design and stability drawbacks of such
a controller, which is able to handle higher parameter
uncertainties and robust enough while keeping the control
architecture and the applied models as simple, but as
realistic as possible. In this first study, we investigated
the case when both the insulin and meal intakes were
”announced”, namely, considered during the prediction
done by the controller. The RHC parameter tuning was
done by using a PSO algorithm. We developed simple
fitting function Ψ to maximize the TIR. The controller
design and control parameter optimization were done by
using the average patient by considering the mean of the
identified patients from Kanderian et al. (2009) and the
tuned controller was tested on a virtual cohort generated
by using 25% parameter variability in all parameters of
(9)-(13) and the virtual cohort was extended by CGMS
model as well with higher noise (ω ∼ N (0, 3.22)). The PSO
optimization run smoothly and found acceptable control
parameters with respect the fitting function Ψ. It has to be
noted that due to the multiple optimizations (in the PSO
and in the RHC) we experienced increasing computational
cost by extending the prediction horizon and simulated
horizon.

We evaluated the results by using CVGA (Fig. 8) and
TIR metrics where the total simulated horizons were
represented with respect to the patient cohort (10 virtual
patients are represented by the 10 white dots in Fig.
8). For the majority of patients a good TIR value is
achieved, however there are some outliers in the cohort,
where hyper- and/or hypoglycemic events occurs. Since
variability applied in all the patient parameters, their
effect on the BG trajectory and consequently on the TIR
metric can mitigate or conversely, amplify their joint effect.
This joint amplification can cause outliers, as it can be seen
in the Lower C and D sections in the CVGA plot as well.
According to our analysis, the outliers are caused by the
joint effects of the randomized patient parameters related
to the effect of insulin sensitivity and insulin clearance.



According to the evaluation, the developed RHC-based
controller is able to provide satisfactory control perfor-
mance.

In our further work we will develop a more complex
cost function structure, furthermore, include a parameter
estimation solution for online parameter estimation.
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