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Abstract: The COVID-19 pandemic is the defying crisis of our time. Since mass vaccination
has not yet been established, countries still have been facing many issues due to the viral
spread. Even in cities with high seroprevalence, intense resurgent waves of COVID-19 have been
registered, possibly due to viral variants with greater transmission rates. Accordingly, we develop
a new Model Predictive Control (MPC) framework that is able to determine social distancing
guidelines and altogether provide estimates for the future epidemiological characteristic of the
contagion. For such, the viral dynamics are represented through a Linear Parameter Varying
(LPV) version of the Susceptible-Infected-Recovered-Deceased (SIRD) model. The solution of
the LPV MPC problem is based on a Sequential Quadratic Program (SQP). This SQP provides
convergent estimates of the future LPV scheduling parameters. We use real data to illustrate
the efficiency of the proposed method to mitigate this contagion while vaccination is ongoing.
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1. INTRODUCTION

The SARS-CoV-2 virus causes a severe acute respira-
tory syndrome, which can become potentially fatal. This
virus has spread rapidly and efficiently, becoming a world-
wide pandemic since the beginning of 2020. As of April,
2021, 130 million COVID-19 cases have been confirmed
worldwide, with over 2.8 million deaths. Vaccines for this
virus have been developed and are currently being applied
worldwide (Le et al., 2020). Nevertheless, the vaccination
landscape is somewhat slow and, in many countries, still
reduced to focus groups. Complementary, many concern-
ing variants of this virus are being registered in all conti-
nents (Mallapaty, 2021). We highlight the case of Manaus,
Brazil (Sabino et al., 2021), where an intense resurgence
of COVID-19 was registered in the beginning of 2021,
despite the high seroprevalence verified in the region. The
effects of the local viral variant with greater transmission
rate corroborate with the thesis that a “natural” herd
immunity threshold is unreachable (Taylor, 2021).

Therefore, the public health tactic of social distancing
is still the most pertinent alternative to control and
end the COVID-19 while vaccination does not reach a
high percentage of the susceptible population, as argue
Fontanet et al. (2021). The concept of social distancing is,
as of today, very well established and understood: in order
to prevent the saturation of health systems due to large
amounts of COVID-19 hospitalisations at the same time,
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social distancing measures are able to dilute the demand
for treatment over time.

Many recent results indicate that Model Predictive Con-
trol (MPC) schemes provide an efficient framework to plan
adequate social distancing measures, theoretically able to
mitigate infection levels, thus maintain Intense Care Unit
(ICU) occupancy rates below boundary-critical thresholds.
These algorithms have been formulated using robust tools
(Köhler et al., 2020), on-off design (Morato et al., 2020a),
parametric formulations (Morato et al., 2020b), and so
forth (Pataro et al., 2021). The great majority of works
consider static contagion models (SIRD, SIDARTHE, and
other variations). Nevertheless, the most recent literature
points out to the fact that the COVID-19 disease ex-
hibits inherent time-varying epidemiological characteris-
tics (transmission rate, lethality, etc), e.g. Calafiore et al.
(2020). This issue has become specially evident with the
rise of the new viral variants (Fontanet et al., 2021).

In light of the previous discussion, the main contribution
of this paper is a novel optimisation-based solution for
the predictive control of the COVID-19 pandemic, taking
into account time-varying contagion characteristics. The
proposed method generates weekly social distancing guide-
lines altogether with accurate estimates for the future be-
haviour of the pandemic. The time-varying characteristics
of the contagion are represented with a Linear Parameter
Varying (LPV) Susceptible-Infected-Recovered-Deceased
(SIRD) model (Sec. 2). Then, the LPV MPC problem is
solved through a Sequential Quadratic Program (SQP)
(Sec. 3). As a complementary contribution, we demon-



strate that this SQP solution ensures convergent estimates
of the future LPV scheduling parameters (Sec. 4). Using
the data of Florianópolis, Brazil as benchmark, we provide
simulation results of the proposed control method (Sec. 5).

2. LPV SIRD MODEL

Recent literature has demonstrated how the SARS-CoV-2
viral contagion dynamics can be appropriately described
by SIRD models (González et al., 2020). These models
describe the viral spread w.r.t. a population that is split
into four non-intersecting classes: (1) the total amount of
susceptible individuals S(k), which are prone to contract
the disease; (2) the individuals that are currently infected
with the disease I(k); (3) the total amount of recovered
individuals R(k); and (4) the total amount of deceased
individuals D(k). Through the sequel, we denote these four
variables as the state variables x(k), which are measurable.
Note that the total population size N(k) is given as the
sum of the first three classes.

Through the sequel, we consider weekly samples k, with
Ts = 7 days. This is done in order to account for the
average incubation period of the virus, and so that social
distancing guidelines do no change so often (refer to the
discussion in (Morato et al., 2020a)).

There are three epidemiological parameters in SIRD mod-
els: (1) the transmission rate parameter β, which repre-
sents the average number of contacts that are sufficient
for transmission of the virus from one individual to an-
other; (2) the infectiousness Poisson parameter γ, which
stands for the inverse of the period of time for which a
given infected individual is indeed infectious; and (3) the
mortality rate parameter ρ, which gives the ratio of in-
fected individuals that die. Following the lines of previous
works, e.g. (Morato et al., 2020b; Calafiore et al., 2020;
Fontanet et al., 2021), we incorporate the time-varying
characteristics of these parameters by considering them
as state-dependent maps. Accordingly, the time-varying
SIRD model is as follows:

S(k + 1) =

1−

aS(k)︷ ︸︸ ︷
Ts
β(k)I(k)

N(k)

S(k) + aS(k)S(k)u(k) ,

I(k + 1) =

(
1 + Ts

β(k)S(k)

N(k)
− Ts

γ(k)

1− ρ(k)

)
I(k)

−
(
Ts
β(k)I(k)S(k)

N(k)

)
u(k) ,

R(k + 1) =R(k) + (Tsγ(k)) I(k) ,

D(k + 1) =D(k) +

(
Ts

ρ(k)

1− ρ(k)

)
I(k) ,

considering the following time-varying epidemiological
characteristics, with Imax and Dmax being the worst-case
infections and lethality expectations, respectively:
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Fig. 1. Time-Varying SIRD Model Validation: Data from
Florianópolis, Brazil.

β(k) = fβ(I(k)) = β0 +
I(k)

Imax
β1 ,

γ(k) = fγ(I(k)) = γ0 −
I(k)

Imax
γ1 ,

ρ(k) = fρ(D(k)) = ρ0 +
D(k)

Dmax
ρ1 .

We note that the state-dependent maps fβ(I(k)), fγ(I(k))
and fρ(D(k)) are coherent with epidemiological discus-
sions: the virus is more transmissible and more infectious
at moments of great infection peaks, and more lethal at
moments of elevated fatalities (as empirically observed
in Manaus (Sabino et al., 2021)). We consider the ac-
tive symptomatic infections as psymI(k + i). Parameters
β0, γ0 and ρ0 stand for nominal transmission, infection
and lethality rates, respectively, while β1, γ1 and ρ1 can
be understood as supplementary rates, which intensify the
contagion spread whenever I(t) gets close to Imax.

In this model, the control input u ∈ [0, 1] represents the
social distancing level: u = 1 represents a total lockdown
situation, with no social interactions, whereas u = 0 stands
for the complete opposite: all the susceptible population
in constant interaction. In practice, we use U := {u ∈
R | 0.3 ≤ u ≤ 0.7}, which represents the set of feasible
social distancing values (Morato et al., 2020a).

In order to illustrate the effectiveness of this time-varying
SIRD model with the proposed state-dependent epidemio-
logical maps to capture the contagion spread phenomenon,
Fig. 1 compares model-based predictions with real data
from Florianópolis, Brazil. The model mismatch is consid-
erably small.

As thoroughly exploited and debated by González et al.
(2020), SIR-type posses only local ε − δ stability pro-
prieties. Furthermore, the time-varying SIRD model pre-
sented in the prequel is highly nonlinear and possibly non-
convex for specific combinations of the time-varying pa-
rameters. Therefore, in order to avoid such inconveniences,
we exploit an exact LPV embedding of the viral dynamics.
LPV models offer reduced conservativeness, being linear
on the state space and thus convex for fixed parameter
values. Since we seek a MPC algorithm application in
order to generate social distancing guidelines, the LPV
framework becomes a welcome solution, leading to convex
programs. We further elaborate on this topic in Sec. 3.

Exploiting the fact that the states x(k) are measurable,
consider the following exact LPV realisation:



x(k + 1) =A(θ(k))x(k) +B(θ(k))u(k) , (1)

θ(k) = fθ(x(k)) , (2)

where θ :=
[

(
fβ(I)I
N ) fβ(I)

fγ(I)
1−fρ(D) fγ(I)

fρ(D)
1−fρ(D)

]T
rep-

resents scheduling variables, which vary according to
the epidemiological characteristics. The scheduling proxy
fθ(k) is measurable at each sampling instant k and
bounded to a known convex set Ω.

In practice, since we deploy a prediction control scheme,
we are concerned with the state trajectory behaviour along
the future Np steps. This prediction horizon slides forward,
at each sampling instant k. Thereof, we extend Eq. (1) in
order to get the following Np-horizon trajectories:

x =A(Θ)x(k) + B(Θ)u , (3)

where x := col(x(k) . . . x(k + Np|k)) represents the pre-
dicted state trajectory sequence, Θ := col(θ(k) . . . θ(k +
Np − 1)) gives the real scheduling trajectory, and u :=
col(u(k|k) . . . u(k +Np − 1|k)) stands for the sequence of
control inputs. A(Θ) and B(Θ) are given below 1 .

A(Θ) =


A(θ(k))

A(θ(k + 1))A(θ(k))
...(

Π
Np−1
i=0 A(θ(k + i))

)
 , B(Θ) =


B(θ(k)) . . .

(
Π
Np−1
i=1 A(θ(k + i))

)
B(θ(k))

0
. . .
(

Π
Np−1
i=2 A(θ(k + i))

)
B(θ(k + 1))

... . . .
...


T

.

3. THE LPV MPC SCHEME

3.1 The Predictive Control Formulation

As previously discussed, our aim in this paper is to find an
optimal control sequence u for Eq. (3) taking into account
the following objectives: (i) minimisation of the number of
active infections I(k), (ii) reduction (as much as possible)
of the social distancing measures, and (iii) upper-bounding
of the active symptomatic infections, which should not
surpass the number of available ICU beds in local hospitals
(threshold given by nICU).

In order to encompass these goals, we consider the follow-
ing quadratic cost function:

Jk =

Np∑
i=1

‖I(k + i|k)‖2q + ‖u(k + i|k)‖2r (4)

= xT (qInx)︸ ︷︷ ︸
Q

x + uT (rInu)︸ ︷︷ ︸
R

u ,

where q = (1−r)
I2max

and r ∈ [0, 1] are scalar weights used to

tune the trade-off between objectives (i) and (ii).

Objective (iii) is implied through the following constraint:

1 Π(·) denotes the left-side product operator.

psymI(k + i)≤ nICU,∀i ∈ N[1,Np] . (5)

Thus, the proposed social distancing strategy for the
COVID-19 contagion spread is based on the following
MPC optimisation problem:

u = min
u
Jk (6)

s.t. x = A(Θ)x(k) + B(Θ)u ,

Axx ≤ bx , Auu ≤ bu .

Note that, in Problem (6), the inequality constraints
are used to ensure objective (iii) and that each control
signal is given within the social distancing feasibility set
U . Ax, Au, bx and bu are obtained by manipulating the
constraints. Furthermore, Jk admits constant weights q
and r, chosen to tune the obtained response.

The state trajectories x can be computed using Θ = fθ(x),
as gives Eq. (2). Nevertheless, using such ”full-blown” non-
linear description of the SIRD trajectories would convert
the optimisation problem (6) into a Nonlinear Program
(NP), which has increased computational complexity. Fur-
thermore, the solution of an NP may have local minima,
which is undesirable.

Recent literature (e.g. (González Cisneros and Werner,
2020)) has shown how that NPs can be converted into
QPs with an adequate replacement of nonlinear scheduling
proxy Θ = fθ(x) by iterative estimates Θ(l). By doing so,
numerical burden is relieved and a global minima Jk of can
be founf w.r.t. Θ(l). This approach is attractive because
the nonlinear state predictions and constraints are handled
linearly at each iteration, which is rather cost-efficient. In
the sequel, we describe the method with more details.

3.2 Method Decription

The core idea of the SQP method is as follows: the MPC
represented by Problem (6) is solved multiple times based
on an iterative frozen prediction model x = A(Θ(l))x(k)+
B(Θ(l))u, which is scheduled according to Θ(l) at the l-th
iteration. At each iteration, the scheduling trajectory Θ(l)
is taken as fθ(x(l− 1)), where x(l− 1) indicates the state
predictions made at the (l−1)-th iteration of the following
optimisation problem:

u(l) = min
u(l)

Jk (7)

s.t. x(l) = A(Θ(l))x(k) + B(Θ)(l)u(l) ,

Axx(l) ≤ bx , Auu(l) ≤ bu .

Problem (7) is a QP, since the state predictions are
linear (matrices A(Θ(l)) and B(Θ(l)) are constant 2 ). We
stress that evaluating Θ(l) = fθ(x(l − 1)) outside of the
optimisation procedure is much simpler than evaluating
it internally as does Problem (6), since the nonlinearities
become static and thus are not spanned over the horizon.

This mechanism has the complexity of an SQP since
Problem (7) is solved sequentially, multiple times at each
sampling instant k. We note that the iterative operations
2 These nonlinear matrices maintain the same form at each iteration
l and, thus, can be efficiently computed.



stop when the scheduling sequence estimate Θ(l) converges
to the true scheduling sequence trajectory Θ. We will
demonstrate this property (convergence) in Sec. 4.

The major advantage of this SQP framework is that this
convergence property is established within a relatively
small number of iterations l. Since an SQP is solved at
each sampling instant k, the framework also serves for
time-critical applications. Another interesting property is
that, at each sampling instant k, we get an estimate for the
future scheduling trajectory Θ, which, in the COVID-19
context, serves to forecast of the future behaviour of the
contagion spread.

The SQP mechanism is implemented as gives Algorithm 1.
The application departs from an initial state sequence x
and an initial scheduling sequence Θ. These vectors can
be simply taken as Np repeated instances of x(0) and
θ(0). Note that the internal loop stops when convergence
is established or when a stop criterion is reached.

Algorithm 1 LPV MPC

Initialise: x(0) = x0, θ(0) = θ(0), k = 0.
Require: Q, R, Np, x, Θ. Loop:
• Step (1): Loop until convergence/stop criterion:

(i) Based on Θ(l) = fθ(x(l)), compute Eq. (3);
(ii) Solve the optimisation in Eq. (7);
• Step (3): Apply u(k) to the process;
• Step (4): k ← k + 1.

end

4. SCHEDULING PARAMETER CONVERGENCE

In this Section, we discuss the convergence property of
the SQP implementation of the LPV MPC problem (Algo-
rithm 1). This is, we focus on the convergence of Θ(l) from
the SQP to Θ (the real scheduling trajectory in Eq. (3)).
We stress that this property is essential, since only with
Θ(l?)→ Θ we can conclude that the control solution u(l?)
will be a minimizer of Jk w.r.t. the real system trajectories
in Eq. (3). This conversely means that the Jk|u(l?) is a local

minimum of Jk for x(l?) = A(Θ(l?)x(k) + B(Θ)u(l?) but
also a global minimum of Jk w.r.t. Eq. (3).

Lemma 1. Convergence of Scheduling Trajectory Assume
Θ = fθ(x) is bijective. Consider that matrices A(Θ) and

B(Θ) are well-defined on Θ. Take Θ̂ := col{θ0 θ1 . . . θNp−1}.
Suppose there exist a symmetric positive definite matrix
Y ∈ R(Npnx)×(Npnx) and a rectangular matrix W ∈
R(Npnu)×(Npnx). The scheduling trajectory estimate Θ̂ :=
Θ(l) converges to the real trajectory Θ within a finite
number of iterations l if the following LMI holds for all
θ0, . . . , θNp−1 ∈ Ω:

0 YAT (Θ̂) 0 YA(Θ̂)

A(Θ̂)Y −Y B(Θ̂)W −Y
? ? 0Y
? ? ? Y

< 0 . (8)

Proof 1. Define the state-feedback u(l) := Kx(l), with
K = WP and P = Y −1 � 0. Apply two consec-
utive Schur complements to Ineq. (8) and pre-/post-
multiply the result by [xT (k)xT (l)] in order to get:(
A(Θ̂)x(k) + B(Θ̂)Kx(l)

)T
P
(
A(Θ̂)x(k) + B(Θ̂)Kx(l)

)
−

(
x(l)TPx(l)

)
< 0. Define the storage function V (l) :=

xT (l)Px in order to get V (l + 1) − V (l) < 0. It follows
that the storage function is decreasing over the iterations
l if LMI (8) holds. Since V (l) > 0 by definition, the LMI
implies in the asymptotic stability of x(l) at some iteration
l?. Conversely, this means that x(l? + 1) = x(l?) and thus
Θ(l?+1) = Θ(l?) since Θ(l) := fθ(x(l)). Using the real pre-
diction model from Eq. (3), we obtain x := A(fθ(x))x(k)+
B(fθ(x))Kx. Since we assume that fθ(·) is bijective, there
exists only one possible Θ := fθ(x) such that Eq. (3) holds,
which means that x is a global attractor for x(l). Therefore
Θ(l?) = fθ(x(l?))→ Θ = fθ(x). This concludes the proof.

Remark 1. Lemma 1 provides infinite-dimensional in-
equalities, which must hold ∀ θ0, . . . , θNp−1 ∈ Ω. In prac-
tice, the solution can be found by enforcing the LMI over a
sufficiently dense grid of points along the Ω×· · ·×Ω plane.
Then, the solution can be verified over a denser grid. If
bounded variation rates for the parameters are known, i.e.
θ(k + 1) = θ(k) + δθ(k) with δθ ∈ δΩ, the complexity can
be relieved.

Remark 2. We should only verify if LMI problem in
Lemma 1 has a parameter-dependent solution Y once
(before the actual operation of Algorithm 1). If this is
true, this Algorithm will ensure convergence. Otherwise,
we cannot guarantee that convergence will be attained. In
this case, another option to demonstrate the convergence
is to invoke the well-known result for the convergence of
Newton SQPs, which implies that a quadratic sub-problem
program of SQP algorithms can be derived by a second-
order approximation of the SQP optimisation cost and
linearisation of its constraints. This discussion is briefly
presented in (González Cisneros and Werner, 2020).

5. SIMULATION RESULTS

Considering the time-varying LPV SIRD model and the
proposed SQP MPC solution to guide social distancing,
we now present simulations results regarding the COVID-
19 contagion spread. For such, we consider data from
the city of Florianópolis, Brazil 3 . Model parameters were
identified using standard methods. Table 1 gathers these
parameters together with the used MPC tuning weights.
These weights are chosen to ensure a trade-off between
infection minimisation and social distancing relaxations,
as indicated in (Morato et al., 2020a). The total number
of ICU beds in Florianópolis is of nICU = 239, for
a population of approximately 5 .105 inhabitants. The
following results were obtained using Matlab, yalmip and
Gurobi.

Table 1. SIRD Parameters and MPC Weights.

β0 0.0951 β1 0.0333 γ0 0.0855
γ1 −4.27 .10−4 ρ0 0.0039 ρ1 0.0029
Ts 7 days psym 39% Imax 750

Dmax 650 r 0.3 q 1.43 .10−5

We present two distinct scenarios: (a) comparing the
application of the proposed MPC strategy to what in fact
was observed in the city Florianópolis (from March 2020
to January 2021); and (b) the use of the MPC strategy to

3 This city was chosen as a case study, but the method was also
tested for other locations, with no loss of generality.
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guide social distancing from January 2021 onward, taking
into account the current vaccination panorama. Recall
that the proposed MPC generates weekly social distancing
guidelines. The prediction horizon is of Np = 4 weeks.

5.1 Effectiveness of the MPC Approach

In order to demonstrate the effectiveness of the MPC
approach to guide social distancing measures in pandemic
situations, we consider the COVID-19 data from Flo-
rianópolis ranging from December 2020 to April 2021. The
actual social distancing level observed in the city in this
period was considerably small (close to u = 0.3), due to
the lack of stronger measures from the federal government
and the resistance of the population in really adhering to
these measures (Ortega and Orsini, 2020).

Firstly, we note that there exists 4 a positive definite
matrix Y , which is a solution of Lemma 1, meaning that
the SQP approach indeed converges. In order to illustrate
this property, we prefer to show that the future predictions
for the effective reproduction number Rt of the contagion,
at each weekly sampling instant, are representative.

We note that Rt is an essential epidemiological concept:
Rt quantifies the average potential of a given contagion,
representing how many cases are expected to be generated
due to a single primary case, within a population for which
all individuals are susceptible. From a control viewpoint,
Rt represents the contagion spread velocity: when Rt > 1,
the number of infections is increasing, whereas if Rt ≤ 1,
the contagion is ceasing. This time-varying parameter is
computed as indicate Morato et al. (2020b):

Rt(k) :=
β(k)(1− ρ(k))

γ(k)
u(k) =

θ2(k)

θ3(k)
u(k) ,

which means that it can be derived from the scheduling
trajectory estimates Θ(l) generated by the SQP frame-
work.

Accordingly, Fig. 2 shows the true model-based effective
reproduction number Rt of the contagion and the esti-
mates generated by Algorithm 1 at different sampling in-
stants. As one can see, the estimates are indeed convergent,
which means that the generated control solution u?(l) is
optimal, since the sequential operation of Eq. (7) becomes
equivalent to the original nonlinear program from Eq. (6).

Complementary, Fig. 3 provides the comparison of the real
contagion data against what could have been seen if an
4 This matrix is not shown due to lack of space (Y ∈ R16×16).

0

200

400

600

I(
k
)

MPC

Real data

0

500

D
(k

)

Jan 2020 Apr 2020 Jul 2020 Oct 2020 Jan 2021
0.3

0.4

0.5

0.6

u
(k

)

ICU threshold
n

ICU
/p

sym Start of

MPC-guided

Social distacing

Health System

Saturation

Maintained Social distacing 

while no-vaccination

Lockdown

Progressive

Softening

of Distancing

Measures

Fig. 3. Scenario (a): MPC vs Data.

MPC coordination had been enacted by the beginning
of October 2020. This figure shows the total deceased
individuals, the number of daily active infections, the ICU
threshold nICU

psym
, as well as the social distancing guideline.

The MPC orchestrates a stronger social distancing guide-
line at first, in order to relieve the peak of infections that
caused a total occupancy of ICU units in Florianópolis
by the end of January, 2021. Evidently, if a coordinated
model-based guideline was used, many deaths could have
been avoided (over 190). Furthermore, the MPC algorithm
is able to plan social distancing measures that are able to
continuously maintain the number of acute active infec-
tions well below ICU threshold, which is very important.
Moreover, the algorithm is able to progressively loosen
the strength of the distancing measures, as expected from
the trade-off objective Jk. The MPC determines an initial
lockdown to harshly attenuate the viral spread, in order to
then revert it gradually into an average social distancing
guideline while vaccination campaigns do not begin.

5.2 Planning for the Following Months

In order to further assess the qualities of the proposed
SQP-based MPC solution for social distancing measures,
we consider a scenario with ongoing vaccination. The cur-
rent vaccination panorama at Florianoópolis is of roughly
2500 vaccinated individuals per day, since the beginning of
February. Therefore, we simulate the time-varying SIRD
dynamics with an additional removal of the vaccinated
individuals from the susceptible population.

Considering this vaccination landscape, we show the ex-
pected contagion behaviour for the following months (from
January 2021) with MPC-coordinated social distancing
measures and without any social distancing (i.e. taking
u(k) = 0.3,∀k, as currently observed). Firstly, Fig. 4 shows
the decay of the susceptible population S due to vaccina-
tion and to infections (with/without MPC coordination),
separately. Evidently, the susceptible population tends to
a steady-state regime due to infections, while displaying
a ramp behaviour w.r.t. the vaccination. This pattern
is coherent with the mass-vaccination effectiveness seen
elsewhere. The figure also display the MPC coordination
results, which generates an intial lockdown that is progres-
sively softened. Note that, in this case, a no-isolation rule
could have been set in practice already April, due to the
great suppression of infections due to vaccination.

Complementary, Fig. 5 provides the pattern of active
infections and deaths in the current vaccination landscape
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with and without social distancing measures. These results
indicate that if no social distancing is enacted, even with
ongoing vaccination, a troublesome scenario would still be
seen, since the number of acute infections gets close to
the ICU threshold (reaching 65% of occupancy). Moreover,
the steady-state regime of a ceased pandemic would only
be attained when over 70% of the susceptible population
is vaccinated (at the current pace, the forecast indicates
this would happen by end-2021). Nevertheless, the results
with an MPC-guided social distancing measures indicate
that the active infections can get very well controlled,
which conversely implies in a “return to pre-COVID-19
life pattern” much earlier, by April 2021, while vaccination
reaches the last quarter percentile of the population.

6. CONCLUSIONS

In this paper, we investigated the use of an SQP-based
solution for the predictive control of the SARS-CoV-2 viral
spread through social distancing measures. In order to
develop this procedure, we consider a time-varying SIRD
equations represented by an LPV model. The predictive
control strategy aims to minimise COVID-19 infections
while relaxing social distancing measures as much as possi-
ble. Using data from Florianópolis, Brazil, we simulate the
effectiveness of the proposed strategy. Our main findings
are highlighted: (1) The presented results corroborate the
hypothesis that “natural’ herd immunity” is not a plau-
sible option. If no coordinated social distancing action is
enforced, the ICU threshold gets dangerously tested, which
can certainly lead to an elevated number of fatalities;
(2) the time-varying viral dynamics can be accurately
described with proposed SQP framework, which spans
good estimates for the future behaviour of the contagion;
(3) the simulation forecasts indicate that social distancing
measures should be maintained while mass vaccination is
not established. The strength of these measures can be
diluted as vaccination progresses.

These results presented in this paper are qualitative. Brazil
has not been testing enough its population (neither via

mass testing or sampled testing), which means that the
data regarding the number of infections is very inconsis-
tent. As discussed by Bastos et al. (2021), the uncertainty
margin associated to the available data in the country is
very significant. Anyhow, the results presented herein can
help long-term regulatory decisions for this pandemic.
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