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Abstract: COVID-19 has spread around the world rapidly causing a pandemic. In this
research, a set of Deep Learning architectures, for diagnosing the presence or not of the
disease have been designed and compared; such as, a CNN with 4 incremental convolutional
blocks; a VGG-19 architecture; an Inception network; and, a compact CNN model known as
MobileNet. For the analysis and comparison, transfer learning techniques were used in forty-five
different experiments. All four models were designed to perform binary classification, reaching
an accuracy above 95%. A set of different scores were implemented to compare the performance
of all models, showing that the VGG-19 and Inception configurations performed the best.
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1. INTRODUCTION

During the last year, a family of the Coronavirus has
been the cause of millions of fatalities around the world ! .
As reported by Punn et al. (2020), the first known epi-
demic, caused by this family of viruses, were the Severe
Acute Respiratory Syndrome (SARS) and the Middle East
Respiratory Syndrome (MERS), which appeared in 2003
and 2012 respectively. In December 2019 a new Coron-
avirus, SARS-CoV-2, appeared in Wuhan 2, which spreads
rapidly, as reported by WHO?, causing a pandemic, as
it was declared in March 11, 2020. Since its appearance
in December 2019, up until this paper is written, 4th of
May 2021, this virus has infected more than 150 million
inhabitants around the globe and has caused the death of
more than 3.2 million people worldwide, as reported by
WHO (2021). By this date in countries like Ecuador, the
Ministry of Public Health -Ministerio (2021), also reported
more than 387 thousand confirmed COVID-19 cases, and
more than 18.7 thousand of them had died.

Given this overwhelming situation, a rapid diagnosis of the
disease would have been beneficial for timely treatment, as
well as for following the appropriate quarantine protocols;
and so, reducing the spread of the virus. Today, these
diagnoses are made in a relatively short time, however
the costs associated with acquiring the testing kits, or
the chemical reagents, or accessing specialized equipment
including the technicians, still is a financial challenge, for
both governments and citizens, particularly in countries

1 https://coronavirus.jhu.edu/data/mortality
2 https://www.who.int /news-room/detail /27-04-2020-who-
timeline—covid-19

with limited public health systems, Apostolopoulos and
Mpesiana (2020).

Ai et al. (2020) showed that COVID-19 pneumonia looks
different, from a radiologist’s perspective; hence, chest X-
ray and computed tomography (CT) imaging are becom-
ing useful tools for screening this disease, due to their high
sensitivity to structures containing air and fluid, as noted
by Hussain et al. (2020), which make them a useful choice
for researchers, to attempt to automate the diagnosing
process of COVID-19.

Machine learning (ML) techniques have shown effective
results in recognizing patterns in clinical images, and
Convolutional Neural Networks (CNN) in particular, have
outperformed conventional ML techniques, effective in
recognizing complex objects and patterns, segmenting
lesions and extracting features from them, as proposed in
Greenspan et al. (2016), with a growing trend in clinical
image analysis and artificial vision applications in health
services.

Deep Learning (DL) techniques have been used for de-
tecting COVID-19 in X-ray chest images; as reported by
Ghaderzadeh and Asadi (2021) CNN architectures, such as
the VGG, ResNet, MobileNet, GoogleNet and Inception,
have shown promising results and have been considered
as the base models for building rapid diagnostic decision-
making tools and increase the diagnostic accuracy.

In this research, four DL models for diagnosing COVID-
19 were analyzed: a CNN model with incremental blocks,
and 3 pre-gated architectures (VGG-19, MobileNetV2 and
InceptionV3), which were trained to analyze chest radiog-



raphy images to produce a diagnosis with a probability.
This paper is organized as follows: section 2 describes
current developments of DL models, designed for recog-
nizing the patterns related to COVID-19; section 3 shows
the methodology followed; section 4 presents the models
and their architectures; section 5 shows the results and a
discussion; and, section 6 draws the main conclusions.

2. THE CONTEXT, METHODOLOGY AND THE
DATASET

CNNs are end-to-end DL models for artificial vision,
with high level performance, in particular in medical
image analysis. COVID-19 still is a challenge to health
service providers and to DL techniques, therefore X-ray
images have become suitable for training deep learning
models. In the early days of the outbreak, CT scans
were common, but over time, the X-rays images have also
become available and easier to access in public repositories,
as reported in Ghaderzadeh and Asadi (2021).

Recently, there have been several proposals for detect-
ing COVID-19 on chest X-ray images, both as binary
or multiclass classification, the GoogLeNet or Inception
model developed by Szegedy et al. (2014); ResNet by He
et al. (2015); VGG by Simonyan and Zisserman (2014);
MobileNet by Pan et al. (2020) and others.

Other approaches look to speed up the COVID-19 di-
agnosis; such as, the feature extraction model proposed
by Tang et al. (2020), based on Random Forest (RF) to
classify the severity of the virus; or a model based on the
analysis of cough using smart phones, presented by Imran
et al. (2020); or a CNN model with a U-net architecture
for segmenting lung lesions, which allows capturing better
contextual relationships, as discussed in Zhou et al. (2020).

Aggarwal et al. (2021) and Jain et al. (2021) have also
compared DL architectures using images, categorized as
normal, COVID and Pneumonia, with transfer learning
and data augmentation for increasing the number of sam-
ples. In this research we tested 4 DL models, 3 of them
were trained using transfer learning, and one trained from
scratch to compare the performance of the models.

2.1 Methodology

The analysis of our models and the comparison of re-
sults were performed in three stages: data collection from
relevant sources and selection of reliable X-ray images;
pre-processing to comply with the expected input format
in DL networks; and the design and definition of hyper-
parameters of our DL models.

During the first stage, data collection was focused on
finding and selecting X-ray chest images from confirmed
COVID-19 cases, as well as cases with negative diagnosis.
During pre-processing we applied techniques for cleaning,
debugging and augmenting the set of images; and, during
the design stage, DL models’ architectures and hyper-
parameters were defined, as well as the evaluation metrics,
which we used to determine the best model’s performance.

Fig. 1. non-COVID-19 X-ray

Fig. 2. COVID-19 X-ray

2.2 Data collection and validation of images

In this stage we explored several medical repositories spe-
cialized in medical images, in particular for X-ray chest im-
ages; among the publicly available repositories we reviewed
Kaggle, Mendeley and various Github sites in which re-
searchers collect images from medical organizations, such
as the Italian Society of Medical and Interventional Radi-
ology, SIRM (2020); the New England Journal of Medicine,
NEJM (2020); and, the Radiological Society of North
America, RSNA (2020). Additionally, we have collected
Ecuadorian X-ray images of patients diagnosed as positive
for COVID-19, from a local hospital in Guayaquil, a city
that was the focus of the pandemic in Ecuador.

The data collection stage ended up with 20866 X-ray
images, H414 images correspond to COVID-19 confirmed
cases, and 11632 to non-COVID-19 or negative cases (the
rest corresponded to other types of lung pathogens, not
related to COVID-19). To ensure the images, collected
from different sources, correspond to chest X-ray images,
they were verified manually, as a result we obtained a
balanced dataset comprised of 3206 images of confirmed
COVID-19 cases, and 3206 images for non-COVID-19. A
sample of these images can be seen in Figures 1 and 2.
This dataset is referred as Dataset_1.

2.3 Pre-processing

The collected images came from different sources, with
a variety of characteristics, such as different sizes and
resolution, variations of light intensity and fuzziness, hence
it was necessary to perform pre-processing procedures,
such as: resizing to a standard 224x224 size; smoothing and
histogram equalization to eliminate noise and highlight the
contrast. For smoothing, a median 5x5 kernel was used.
To make sure the images were no duplicated, cleaning and
debugging was necessary, as well as to check each image to
avoid non chest X-ray images. For this procedure we use a
technique called Image Hashing, as introduced by Buchner
(2020). This process was applied to Dataset_1, to produce
the Dataset_2.

The Image Data Generator from Keras was also used
for data augmentation to increase the number of images;
12 new images were created per sample. Table 1, shows
the combinations of data augmentation techniques and



parameters used. This process was applied to Dataset_1,
producing the Dataset_3.

Table 1. Data Augmentation Parameters

Technique 1 2 3
Horizontal Flip True True True
Width Shift Range 0.2 0.1 0.1
Height Shift Range 0.2 0.1 0.1
Shear Range 0.2 0.1 Don’t Apply
Zoom Range 0.2 0.1 Don’t Apply
Rotation Range 20 10 Don’t Apply

3. DEEP LEARNING MODELS DESIGN

During this stage, different architectures were designed
based on a CNN model, then compared their classification
performance and their ability to diagnose the presence, or
not of COVID-19; hence, a set of hyper-parameters and
metrics were defined for evaluating the results.

For selecting the best CNN architecture, 4 different models
were designed and built; one was conceived from scratch
based on Convolutional Blocks, and the others were pre-
trained based on a transfer-learning approach, speeding up
the training process and searching for minimum error.

X-ray images from COVID-19 patients are captured in
gray scale and contain several patterns, spread throughout
the lungs, as they can be observed in Figure 2. Learning
the disease’s patterns from the set of training images,
requires an architecture with enough processing units to
cope with the number of features expected to discriminate
the patterns associated with the disease.

Pre-trained models have been applied to extract relevant
features and patterns from images, with promising results
as discussed by Zhuang et al. (2020), an approach we used
to speed up the extraction of relevant features and patterns
from X-ray gray images. In this research, the pre-trained
models used were: a) VGG-19, b) MobileNet V2, and c)
Inception V3; these based models were trained as feature
extractors. For the classification phase we designed our
own Multi Layer Perceptron (MLP), to classify an X-ray
image as COVID or Non-COVID. In this research a set of
experiments were designed to test the models and cross-
validate their results.

Following the transfer learning approach, the convolu-
tional section of our CNN models were trained to extract
the X-ray features. The transferred model’s parameters
matrices were used as initialization of our parameters,
prior to train the models. Our CNN’s classification phase
were also trained to discriminate from those extracted fea-
tures. The forth proposed CNN model, with 4 incremental
convolutional blocks, was trained from scratch without us-
ing transfer learning, showing comparable results in some
of the performance metrics, as it is described in section 4.

Regarding the hyper-parameter settings, all models share
the same configuration. The convolutional layers are ac-
tivated by a Rectified Linear Unit (ReLU); a binary-
crossentropy loss function; and, a Stochastic Gradient
Descent optimizer. The MLP has two hidden layers with
a Dropout layer. All models were also compiled using
the Adam optimization method. A description of each
architecture follows:

VGG-19.  This architecture proposed by Simonyan and
Zisserman (2014) is composed by 19 trainable layers, which
includes convolutional blocks, max-pooling layers, a fully
connected layer, one dropout, and one dense connected
layer at the output, as it is shown in Figure 3.
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Fig. 3. VGG-19 Architecture

MobileNet V2. Developed by Szegedy et al. (2014), this
model belongs to the family of general-purpose artificial
vision neural networks, designed for mobile devices. This
model uses Depthwise Separable Convolutions and intro-
duces the concepts of Inverted Residuals and linear Down-
sampling, resulting in an efficient memory improvement.
This model’s architecture is comprised of fully convolution
layers with 32 filters, 19 residual down-sampling, dropout
layers, and batch normalization layers, as shown in Figure

Fig. 4. MobileNet V2 Architecture

Inception V3.  This model, first developed by GoogLeNet,
represents the implementation of many ideas developed by
various researchers over the years, as discussed in Szegedy
et al. (2016). The model, as represented in Figure 5, con-
sists of symmetric and asymmetric series of convolutional
blocks, avgPool and maxPool poolings, concatenations,
dropouts, and fully connected layers with a Softmax acti-
vation function at the output.
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Fig. 5. Inception V3 Architecture

A CNN with 4 incremental Conv blocks.  In this model 4
incremental conv blocks are used, each with 8 conv layers,
32 filters of size 3x3, and Batch Normalization after each
conv layer to normalize every batch of data. Then a max-
pooling layer with 2x2 filters, after every 2 conv layers,
which is used to reduce the dimensionality by half. In this
architecture there is an incremental 10% dropout layer,
after every two convolutional layers, starting from a 20%



dropout. Figure 6 shows the main components of such a
network.
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Fig. 6. CNN with 4 incremental Convolutional Blocks
Architecture

Ezxperiments.  Three sets of experiments were de-
signed for training the models based on the datasets,
Dataset_1, plus two variations: Dataset_2 containing the
pre-processed images; and, Dataset_3 with data augmenta-
tion. All datasets were fragmented in 80% for training, 20%
for testing and in each experiment the following hyper-
parameters were tested:

Table 2. Experiments

Exp. Model Hyper-params Dataset
VGG-19 E:;ELS default config
1 MobileNet V2 Binary Crossentropy Dataset_1
Inception V3 Adam Optimizer 3206 COVID
3206 non-COVID
ReLu
HeUniform
Binary Crossentropy
CNN 4ICB SGD Optimizer
Alpha
Momentum
VGG-19
2 MobileNet V2 Same as exper. 1 Dataset_2
Inception V3 : 3206 COVID
CNN 4ICB 3206 non-COVID
VGG-19
3 MobileNet V2 Same as exper. 1 Dataset_3
Inception V3 : 38472 COVID
CNN 4ICB 38472 non-COVID

Performance Metrics.  To evaluate the performance of
each model, a set of metrics were defined, such as the
Confusion Matrix, the ROC Curve and the AUC values,
as well as the scores that measure Precision & Recall, the
F1 Score, and the set of Support.
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Fig. 7. Confusion Matrix for the VGG-19 and MobileNet
V2
4. ANALYSIS OF RESULTS

As it is shown in Table 2, training was performed through
3 sets of different experiments, with 15 different config-
urations each: In the first experiment all models were
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Fig. 8. Confusion Matrix for the Inception V3 and CNN
Incremental Convolutional Blocks

trained using Dataset_1, with the 3206 original chest X-
ray images of confirmed COVID-19 cases, and 3206 non-
COVID-19 cases. The second experiment was performed
with Dataset_2; and, the third with Dataset_3, which
included data augmentation images, generated from the
Dataset_1.

In general, Experiments 1 and 2 presented better results
with the VGG-19, MobileNet V2 and Inception V3 archi-
tectures, while the CNN with 4 incremental Conv blocks
performed the worst in discriminating between the two
classes. Experiment 3 was contradictory for the VGG-
19, MobileNet V2 and Inception models, however the
CNN with 4 incremental Conv blocks improved slightly.
The pre-processed versions of these datasets did not show
significantly better results in any of the experiments, as
compared to the training with Dataset_1. The third ex-
periment, which included data augmentation, showed the
best results for the three models, as compared to the other
configurations. The confusion matrices for the four models
are shown in Figure 7 and Figure 8.

After 60 trainings cycles, the ROC curve and confusion
matrices showed that VGG-19 and Inception V3 per-
formed best, with 0.994 and 0.988 AUC respectively, as
compared to the other 2 models, as seen in Figure 9.

As it can be observed from the confusion matrices, VGG-
19 and Inception V3 performed the best, with 83 true
negatives and true positives out of 84 instances, and 1 false
negative in both cases; as for the other models, the Mo-
bileNet V2 and the CNN with 4 incremental convolutional
blocks, there were 2 and 3 false negatives respectively; and
4 false positive in the case of the CNN with 4 incremental
conv blocks.

Table 3, shows the scores for Precision, Recall and F1
metrics, which corroborate the best performance of the
VGG-19 and Inception V3 models, tested on the set of

Table 3. Experiment Results

Model Precision Recall F1- Support
Score
VGG-19 C-19 0.99 1 0.99 83
noC-19 1 0.99 0.99 84
MobileNet2 C-19 0.95 1 0.98 83
noC-19 1 0.95 0.98 84
Inception3  C-19 0.99 1 0.99 83
noC-19 1 0.99 0.99 84
CNN 4BI C-19 0.93 0.98 0.95 83
noC-19 0.97 0.93 0.95 84
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Fig. 9. ROC Curves
84 instances for predicting COVID-19 and non-COVID-19

cases.

Implementation and evaluation of models.  For imple-
menting the models we used Google Colab’s free GPU,
NVIDIA Tesla K80 12 GB. The models, pre-processing and
training were implemented in TensorFlow 2.3.0, running in
Python 3.6.9. VGG-19, Inception V3 and MobileNet V2
models showed comparable results; however, there were
differences in terms of training time and the number of
parameters to learn. With the confusion matrix results,
accuracy, sensitivity and specificity were evaluated using
(1), (2) and (3) respectively. Tables 4 and 5 show a sum-
mary of these results:

Accuracy = (TP+TN)/(TP+TN+ FP+FN) (1)

Sensitivity = TP/(TP + FN) (2)
Speci ficity = TN/(TN + FP) (3)
Table 4. Performance Metrics and Scores
Model Accuracy  Sensivity Specificity  Training
Time
VGG-19 0.994 1.000 0.988 Smin 52s
MobileNet 0.976 1.000 0.952 8min 32s
V2
Inception 0.994 1.000 0.988 8min 44s
V3
CNN 4BI 0.952 0.976 0.929 18min 57s

Table 5. Trainable and Non-trainable params

Model Total Trainable Non-
Params Params trainable
Params
VGG-19 26,513,217 6,488,833 20,024,384
MobileNetV2 18,380,609 16,122,625 2,254,984
InceptionV3 34,976,289 13,173,505 21,802,784
CNN 4IB 7,599,393 7,597,217 2,176

MobileNet V2 was the model with the largest number
of parameters to be learned; in contrast, the VGG-19
model had the fewest number of parameters, although the
training time was not significantly different among the

models. The training time, for the three models where
transfer learning was used, was around 8 minutes, as it is
shown in Table 4, except for CNN with 4 incremental conv
blocks model, which needed twice the time to be trained.

The models with transfer learning were trained during
30 epochs. Figures 10 through 13 show the training and
validation recorded at each training cycle; the left images
show the training and validation accuracy and the right
images show the corresponding loss during training and
validation procedures, at every epoch for each model
tested.
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Fig. 10. Training and validation accuracy per epoch on
VGG-19
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MobileNet V2
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Fig. 13. Training and validation accuracy per epoch on
CNN

The VGG-19 architecture compared to the other models,
converged after 10 epochs, as Figure 10 shows, a stable

condition was reached at an average loss of 0.009. Figure
11, on the other hand, shows that the MobileNet V2 model



reached stability after 20 epochs, with an average loss of
0.022. A similar behavior was observed for the Inception
V3 model, it took 15 epochs to reach stability, with an
average loss of 0.108, as it can be seen in Figure 12.

While the model CNN with 4 incremental convolutional
blocks, shown in Figure 13, needed more than 40 epochs
to reach stability, with an average loss of 0.025.

5. CONCLUSIONS

This work presents three deep learning models based
on pre-trained CNN architectures (VGG-19, MobileNet
V2 and Inception V3) and one fully customized CNN
with 4 incremental convolutional blocks, trained to learn
patterns of COVID-19 pneumonia in chest X-ray images.
These models were trained with three different datasets
applying various techniques of image pre-processing and
data augmentation in order to obtain improvements in the
learning process showing promising accuracy and stability
in loss.

All four models were designed to perform binary classi-
fication for COVID-19 and non-COVID-19 cases (other
types of lung diseases will be classified as non-COVID-
19), and they reached an accuracy above 95%, as in the
with 4 incremental convolutional blocks model, but close
to 100% in the VGG-19 and Inception V3 models, with
high sensitivity and specificity.

The accuracy of the models proposed could be improved
with a greater number of chest X-ray images of COVID-19
and non-COVID-19 cases. We observed that in this case,
applying data augmentation to chest X-ray images does
not necessarily improve the models’ results.

This research has proposed an alternative methodology
and tools for diagnosing this new disease, using conven-
tional chest X-ray images, as they are available in countries
with limited infrastructure for medical image analysis,
through deep learning models based on convolutional neu-
ral networks, which can be provided as a remote service
through a web system and support the medical community.
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