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Abstract: The Seidel-Herzel model of the autonomic-cardiorespiratory system is used in this
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of patient-specific applications. The errors stemming from model approximations and uncertain
parameters are analyzed. The applicability of the approach is discussed in a simulation study.
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The interactions between the autonomic nervous, the
cardiovascular and the respiratory systems control the
autonomic-cardiorespiratory regulation. A variety of mod-
els describing the autonomic-cardiac regulation have been
developed. All these models can be grouped into ones
yielding hybrid systems where switching phenomena ap-
pear (Olufsen et al. (2007, 2006); Ottesen and Olufsen
(2011); Seidel (1997); Seidel and Herzel (1995)), and others
containing solely Lipschitz continuous functions (Ataee
et al. (2012); Cavalcanti and Belardinelli (1996); Fowler
and McGuinness (2005); Olufsen and Ottesen (2012);
Ottesen (1997a,b); Ottesen et al. (2014)). However, only
a few works e.g. Ataee et al. (2012); Seidel (1997); Seidel
and Herzel (1995) incorporate the effects of the respira-
tory system. The models developed in Seidel and Herzel
(1995) and Seidel (1997), analyzed and refined further in
Dudkowska and Makowiec (2007); Duggento et al. (2012);
Kotani et al. (2005); Rabinovitch et al. (2015); Seidel and
Herzel (1998) cover heart rate regulation, respiratory sinus
arrhythmia and resonant interaction of respiration and
blood pressure oscillations (Mayer waves). They are hybrid
systems involving nonlinear delayed differential equations
and different switching phenomena.

Different approaches for the estimation of the parameters
of these models have already been developed in Marquis
et al. (2018); Olufsen and Ottesen (2012); Ottesen et al.
(2014); Seidel (1997), for example. The online estimation
of unmeasured quantities using observers has, however,
gained little attention. While blood pressure, heart rate,
and respiration rate, and respiration flow can be accurately
measured using noninvasive approaches, activities of the
parasympathetic and sympathetic systems are, however,
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difficult to measure. Online estimation of these activities
is crucial to design patient-specific applications or better
understand the involved mechanisms.

In this work, the description of the baroreflex, the auto-
nomic nervous system, the respiratory system, and the
neurotransmitters developed in Seidel (1997) are briefly
recalled. It is shown that the instantaneous blood pressure,
the activity of the respiratory neurons, and the heart
rate can be seen as exogenous signals, an input, and an
output, respectively, of a dynamic system described by
ordinary differential equations involving time delays and
nonlinearities. A significant obstacle in the analysis of this
model is its complex hybrid nature combined with the nu-
merous nonlinearities and delays complicating the design
of observers. To use standard tools for estimation and ob-
servation problems, a continuous but physiologically valid
approximation is needed. This idea has already been used
in Olufsen and Ottesen (2012); Ottesen et al. (2014); Seidel
(1997) for parameter estimation. It is used here, perhaps
for the first time, to design observers to estimate neu-
rotransmitter concentrations and external inputs exciting
the nervous system. The effects of this approximation and
that of parameter uncertainties on the estimation error are
analyzed in detail.

This work is structured as follows. Notation is introduced
in Section 1. In Section 2, models for the baroreceptors, the
respiratory and the autonomous nervous systems, and the
concentrations of the neurotransmitters are presented. The
estimation of the concentrations in the absence of external
excitations of the nervous system is discussed in Section
3. Their simultaneous estimation with external excitations
of the sympathetic and parasympathetic systems are dis-
cussed in Sections 4 and 5.



1. NOTATIONS

The Gamma function is denoted Γ. For a vector a ∈ Rn,
‖a‖ denotes any p-norm. A signal x : t 7→ x(t) delayed by
θ ∈ R+ is denoted δθx(t) := x(t − θ). The explicit time
dependency is omitted when no confusion can occur.

Denote by g a saturation function satisfying the assump-
tion 1 and by γ its Lipschitz-constant.

Assumption 1. Let g : R→ R be a differentiable function
vanishing at zero and satisfying

lim
x→−∞

g (x) = −1, lim
x→∞

g (x) = 1 and
d

dx
g (x) > 0.

2. MODEL

The model introduced in Seidel (1997) is briefly recalled.

2.1 Baroreceptors

Baroreceptors, sometimes also called pressure receptors,
are neural cells wound around blood vessels. They are
located along the aorta with the most important ones
in the aortic arch directly at the heart and at the sinus
caroticus in the neck. The aortic nerve and the carotid
sinus convey their signals to the brain. Experimental
investigations have shown that the baroreceptors’ activity
depends on both the pressure and its time derivative. It
has a sigmoidal shape, i.e. they start to fire only when
the blood pressure reaches a threshold, and attains a
saturation when it becomes high. These effects can be
modelled by

ν̄b = (pb,c − pb,0)
(

1 + g
(
p−pb,c+kbṗ
pb,c−pb,0

))
,

with ν̄b the baroreceptors spike frequency, p the blood
pressure, pb,0 the pressure for which the static response ṗ
drops to zero, and kb, pb,c are positive scalar parameters.

Since the shape of the pressure wave changes along the
aorta, the different baroreceptors have different pressure
inputs. The conduction time of their signals to the brain
depends also on their location. This is not taken into
account in the latter equation but can be modelled using
a convolution with a Green function q (·) such that their
broadened activity is given as

νb(t) =

∫ ∞
−∞

q (t− τ) ν̄b(τ)dτ, (1a)

with

q (t) =

{
0 for t 6 0,
1
σΞ2+η/σ

(
t
σ

)
for t > 0,

where
Ξl(x) = xl/2−1e−x/2

2l/2Γ(l/2)
.

The parameter η is the delay to the maximum response
and σ is a measure for the width of the kernel.

2.2 Medulla and autonomic nerves

The medullary circulation centers combine the impulses
from the baroreceptors, the different cerebral regions, and
the respiratory neurons. The sympathetic and parasympa-
thetic nerves convey its output to the heart. The following
characteristic are known from physiology:

• An increased activity of the aortic nerve and of the
carotid nerve sinus reduces the sympathetic activity.

• An increased activity of the aortic nerve and of the
carotid nerve sinus enhances the parasympathetic
activity.

• The strength of these influences is determined by the
phase of the respiratory cycle.

Thus, the sympathetic and parasympathetic activities
denoted νs and νp, respectively, are modelled as

νs = max {0, ks,rνr − (1 + ks,brνr) νb + νs,0} , (1b)

νp = max {0, kp,rνr + (1 + kp,brνr) νb + νp,0} , (1c)

with the positive scalar parameters kp,r, kp,br, νp,0, ks,r,
ks,br and νs,0. The activity of respiratory neurons, denoted
νr, is modelled as

νr(t) = 1
2 −

1
2 sin

(
2π

t−tinsp+θr
Tr

)
, (1d)

with Tr > 0 the respiration period, tinsp > 0 the time of
last inspiration beginning, and θr > 0 is a phase shift.

2.3 Concentration of neural transmitters

The sympathetic and parasympathetic activities regulate
the concentrations of neurotransmitters which in turn in-
fluence the heart rate. Noradrenaline is the sympathetic
one and acetylcholine is the parasympathetic one. Ex-
perimental investigations have shown that the effect of
the sympathetic activity is attenuated as the level of
parasympathetic one increases. Due to the finite transport
time of information in the nerves, time delays appear in
the system and cannot be neglected. Denote by cp and
cs the concentrations of acetylcholine and noradrenaline,
respectively. Their dynamics can be described by

τsċs = −cs + g
(
bsδ

θsνs

) (
1− g

(
asδ

θpνp

) )
(1e)

τpċp = −cp + g
(
bpδ

θpνp

)
, (1f)

where τs > 0 and τp > 0 are time constants, θs > 0 and
θp > 0 are the transport delays of the sympathetic and
parasympathetic activities, respectively, and bs, as and bp
are positive scalar parameters. The initial conditions are
cs(t0) = cs0 and cp(t0) = cp0.

2.4 Heart rate

The heart rate, denoted h, depends on the concentration
of the neurotransmitters acetylcholine and noradrenaline.
While an increase in the first causes a reduction of the
heart rate, an increase in the second induces a raise. It
is defined as the time elapsed between two beats and
thus is a piecewise constant function of time. Different
pulsatile models for the dynamics of h have been discussed
in the literature. See for instance Olufsen et al. (2007,
2006); Seidel (1997); Seidel and Herzel (1995, 1998). This
approach yields a hybrid system. In order to use the well
established methods from control theory developed for
continuous-time systems, the heart rate h is approximated
in this work by a continuous-time function f of the
concentrations cp and cs, i.e.

h = f(cp, cs). (1g)

For it to be physiologically valid, f has to satisfy for all
concentrations cs and cp the conditions

∂
∂cp

f(cp, cs) < 0, and ∂
∂cs
f(cp, cs) > 0, (1h)



discussed above. These conditions describe the physiolog-
ical observation that the heart rate is increased by an
elevation of sympathetic transmitter and decreased by an
elevation of vagal transmitter.

Two possible definitions for the function f satisfying this
conditions have been proposed in the literature. First, a
linear combination of the neurotransmitters, i.e.

h = f(cs, cp) u h1(cs, cp) = h0 + αcs − βcp, (1i)

with h0, α, β > 0, was introduced in Olufsen and Ottesen
(2012); Seidel and Herzel (1998). While it was proposed us-
ing a phenomenological description, it can be seen here as
a linearization of the function f around the intrinsic heart
rate h0. Second, A combination of the neurotransmitters
involving a coupling term, i.e.

h = f(cs, cp) u h0 + αcs − βcp − γcscp, (1j)

with h0, α, β, γ > 0, was proposed in Ottesen et al. (2014).
Note that for the conditions in (1h) to be fulfilled, it is not
sufficient that the parameters are strictly positive.

2.5 Discussion

The model in (1) involves different parameters, measured
and unmeasured signals. Continuous-time measurements
are necessary for the development of estimation algo-
rithms. The heart rate can be measured using electrocar-
diography. The inspiration times can be computed from
the output of a spirometer measuring the airflow. Non-
invasive measurement of the arterial blood pressure can
be obtained using the volume-clamp method Bogert and
van Lieshout (2005). Hence, in the sequel, the pressure,
the heart rate, and the inspiration times are assumed
to be measured. In this setting, the activity νr of the
respiration neurons is the only signal that a person can
freely act on by varying the inspiration times. Hence, from
a system theoretic viewpoint, the concentrations cp and
cs are viewed as two-state components, the activity νr of
the respiration neurons as an input, the blood pressure
p and its time derivative ṗ as exogenous signals and the
heart rate as the output of the system. For lack of space,
the problem of parameter identification is not addressed
in this work. Only the estimation of unknown signals, i.e.
the concentrations of the neurotransmitters and possible
external excitations of the sympathetic and parasympa-
thetic systems are considered.

3. ESTIMATION OF THE CONCENTRATIONS IN
THE ABSENCE OF EXTERNAL EXCITATIONS

Let
u1 = g

(
bsδ

θsνs

) (
1− g

(
asδ

θpνp

))
,

u2 = g
(
bpδ

θpνp

)
,

and note that u1, u2 ∈ [0, 1]. From physiological considera-
tions it follows that for healthy patients the concentrations
cs and cp can only be positive and that the dynamics of
cp are slower than those of cs, i.e. τp < τs. The ansatz

τ̂s ˙̂cs = −ĉs + u1 + l1τ̂s(h− ĥ), ĉs(t0) = ĉs0 ∈ R+

τ̂p ˙̂cp = −ĉp + u2 + l2τ̂p(h− ĥ), ĉp(t0) = ĉp0 ∈ R+

ĥ = h0 + αĉs − βĉp,
of a linear observer with parameters l1, l2 ∈ R and state
[ĉs, ĉp]T is considered in the sequel. The quantities τ̂s and

τ̂p represent identified values for the time constants and
are defined as

τ̂s = τs −∆s, τ̂p = τp −∆p, ∆p,∆s ∈ R,
such that τs > ∆s and τp > ∆p. The quantities ∆p and
∆s are Parameter uncertainties. The convergence of the
estimation error and the robustness of the observer with
respect to parameter uncertainties are analyzed in the
sequel. Furthermore, the error due to the approximation of
the heart rate by a linear combination of the neurotrans-
mitters is considered.

With e = [es, ep]T = [cs− ĉs, cp− ĉp]T , the error dynamics
read

τ̂ ė = − (I + τ̂LC) e− τ̂Lw(cs, cp) + ∆τ [cs, cp]T , (2)

with

e(t0) = [cs0 − ĉs0, cp0 − ĉp0]T = e0,

C = [α, −β], L = [l1, l2]T ,

τ̂ = diag(τs, τp) + diag(∆s,∆p) = τ + ∆,

and w the error between the approximated heart rate and
the true one , i.e.

w(cs, cp) = f(cs, cp)− h0 − C[cs, cp]T .

Proposition 2. (Robustness of the first observer). Let κ be
a KL function and k, w̄, c̄ > 0 some scalars. If l1 > 0 and
l2 < 0, then for every initial error e0, a T > 0 exists such
that the solution of 2 satisfies

‖e(t)‖ 6 κ (‖e0‖ , t− t0) , t0 6 t 6 T (3a)

‖e(t)‖ 6 µ(l1, l2), t > T, (3b)

with µ(l1, l2) = k (‖L‖ w̄ + c̄) / (l1 − l2).

The proof of the proposition is omitted here for lack
of space. The inequalities (3a) and (3b) show that e is
uniformly bounded for all t > t0 and uniformly ultimately
bounded with the ultimate bound µ. It can be verified
that if τ̂s 6= τ̂p there always exit l1 and l2 such that these
inequalities are satisfied. This conditions corresponds to
the observability condition of the system when the output
is assumed to be (1i). It is not restrictive as experiments
have shown that the dynamics of acetylcholine are faster
than those of noradrenaline. The error bound is a function
of l1 and l2 and it is straightforward to verify that it sat-
isfies liml1→∞ µ(l1, l2) = liml2→−∞ µ(l1, l2) = kw̄. When
the gains approach zero, the bound increases as its denom-
inator approaches zero. However, when the gains vanish,
there is no output injection any more and the estimation
error is only given by the error in the parameters. The
effect of the initial conditions will vanish exponentially,
since the origin of the uncontrolled system is exponentially
stable. The following proposition analyses the effect of the

parameters l1 and l2 on the error eh(t) = h(t)−ĥ(t). It can
be shown that the error eh can be made arbitrary small.

Proposition 3. Let ti > T and ti+1 > ti, with T from
proposition 2, be two consecutive times where the heart
beats. For any l1 > 0 and l2 < 0 there exists positive

functions γ1, γ2 > 0 such that the error eh(t) = h(t)− ĥ(t)
satisfies for all t ∈ [ti, ti+1[

‖eh(t)‖ 6 γ1 (l1, l2) e−CLt− γ2 (l1, l2) ,

with

lim
l1→∞

γ2 (l1, l2) = lim
l2→−∞

γ2 (l1, l2) = 0.



Proof. Knowing that the true output in (1g) is a piece-
wise constant function with respect to time it holds that
ḣ(t) = 0, for all t ∈ [ti, ti+1[, and it follows that

ėh(t) = ḣ(t)− ˙̂
h(t)

= −CLeh(t) + Cτ̂−1ĉ(t) + Cu(t),

with u(t) = [u1(t), u2(t)]T , ĉ(t) = [ĉs(t), ĉp(t)]T and

the initial condition eh(ti) = h(ti) − ĥ(ti) = ehi for
all t ∈ [ti, ti+1[. The explicit solution of this differential
equation in this interval reads

eh(t) = e−CL(t− ti)ehi

+

∫ t

ti

e−CL(t− τ)Cτ̂−1ĉ(τ) + Cu(τ)dτ.

Proposition 2 gives a bound µ for the norm of the estima-
tion error of the concentrations of the neurotransmitters.
Since the real concentrations are also bounded, It follows
that the estimated ones are as well, i.e. ‖ĉ(t)‖ 6 µ(l1, l2)+
c̄, with c̄ the bound of the true concentrations, with µ
from Proposition 2,. From the definition of u, it follows
that ‖u(t)‖ 6 2. Thus, the later solution satisfies for all
t ∈ [ti, ti+1[

‖eh(t)‖ 6 e−CL(t− ti) ‖ehi‖

+
(∥∥Cτ̂−1

∥∥ (µ+ c̄) + 2 ‖C‖
) ∫ t

t0

e−CL(t− τ)dτ

6 e−CL(t− ti) ‖ehi‖
+
(∥∥Cτ̂−1

∥∥ (µ(l1, l2) + c̄) + ‖C‖ ū
)

e−CLt−1
LC

= γ1 (l1, l2) e−CLt− γ2 (l1, l2) ,

with

γ1 (l1, l2) = eCLti ‖ehi‖+ γ2 (l1, l2) ,

γ2 (l1, l2) =
‖Cτ̂−1‖(µ(l1,l2)+c̄)+‖C‖ū

LC .

The constant γ2 requires some further analyses with regard
to its dependency on l1 and l2. While

∥∥Cτ̂−1
∥∥ c̄+ ‖C‖ ū

is independent of l1 and l2, the bound
∥∥Cτ̂−1

∥∥µ(l1, l2) is
not. However,

µ(l1,l2)
LC = k

w̄
√
l21+l21+c̄

θ(l1−l2)(αl1−βl2)

approaches zero when l1 and/or l2 approach infinity. Thus,

lim
l1→∞

γ2(l1, l2) = lim
l2→−∞

γ2(l1, l2) = 0.

This proposition states that the estimation error is
bounded by two components: The first one represents an
exponentially decreasing part. The second one is a bound
depending solely on the gains l1 and l2. It decreases with
increasing absolute value of the gains. Due to the discrete
nature of the measured heart rate, this observer can be
seen as a predictor-corrector: Each time the heart beats,
the estimations are corrected.

4. ESTIMATION OF THE CONCENTRATIONS AND
AN EXCITATION OF THE SYMPATHETIC SYSTEM

For a piecewise constant external excitation xs of the
sympathetic system, the model can be summarized as

τsċs = −cs + g
(
bs
(
δθsνs + xs

)) (
1− g

(
asδ

θpνp

))
τpċp = −cp + g

(
bpδ

θpνp

)
ẋs = 0,

h = f(cs, cp),

with the initial conditions cs(t0) = cs0, cp(t0) = cp0 and
xs(t0) = xs0.

To simplify the analysis, the parameters of the system are
assumed to be known. In Marquis et al. (2018); Olufsen
and Ottesen (2012); Ottesen et al. (2014); Seidel (1997)
different approaches for the estimation of these parameters
have been developed for similar models and can be applied
here as well. It is also assumed that the function f is linear
in the concentrations, i.e. it is defined as in (1i). The ansatz

τs ˙̂cs = −ĉs + g
(
bs
(
δθsνs + x̂s

)) (
1− g

(
asδ

θpνp

))
+ l1(h− ĥ)

τp ˙̂cs = −ĉp + g
(
bpδ

θpνp

)
+ l2(h− ĥ)

˙̂xs = l3(h− ĥ)

ĥ = h0 + αĉs − βĉp,
of an nonlinear observer with parameters l1, l2, l3 ∈ R is
considered. The state and initial condition are denoted
ĉ = [ĉs, ĉp, x̂s]

T and ĉ(t0) = [ĉs0, ĉp0, x̂s0]T .

Let e = [cs − ĉs, cp − ĉp, xs − x̂s]
T = [es, ep, exs

]T . The er-
ror dynamics read

τsės =− (1 + l1α)es − l1βep

+
(
1− g

(
asδ

θpνp

)) (
g
(
bs
(
δθsνs + xs

))
−g
(
bs
(
δθsνs + x̂s

)))
τpėp =− l2αes − (1 + l2β)ep

ėxs
=− l3αes + l3βep,

(4)

with e(t0) = [cs0 − ĉs0, cp0 − ĉp0, xs0 − x̂s0]T . The next
proposition characterizes the exponential stability of the
origin of the error dynamics.

Proposition 4. (Stability of the second observer). Assume
the saturation function g satisfies Assumption 1 and de-
note by γ its Lipschitz-constant. Let

A = diag(1/τs, 1/τp, 0)− diag(1/τs, 1/τp, 1)LC

with L = [l1, l2, l3]T and C = [α, −β, 0], and P be the
solution of the Lyapunov equation

PA+ATP = −Q, QT = Q.

The origin of (4) is globally exponentially stable if and
only if

γ + bs
2 + 1

2 <
λmin(Q)

2λmax(P ) .

Proof. For the stability analysis of the estimation error,
the dynamics of es, i.e.

τsės = −(1 + l1α)es − l1ep

+
(
1− g

(
asδ

θpνp

)) (
g
(
bs
(
δθsνs + xs

))
−g
(
bs
(
δθsνs + xs − exs

)))
,

are considered first. For the proof of stability, the system
is rewritten such that it becomes the linear combination
of an exponentially stable linear part and a nonlinear one
vanishing at zero which will be seen as a perturbation. Let

z = δθsνs + xs

κ(z, exs) =
(
1− g

(
asδ

θpνp

)) (
g (bsz)− g (bs(z − exs))

)
.

It can be shown that g satisfies g(x) = 1
2x + ε(x), with

ε being a Lipschitz continuous function with Lipschitz
constant γ + 1, where γ is the Lipschitz constant of g.
Then, the function κ can be rewritten as



κ(z, exs) =
(
1− g

(
asδ

θpνp

)) (
bs
2 exs

+ ε (bsz)− ε (bs (z − exs))
)

= bs
2 exs − g

(
asδ

θpνp

)
bs
2 exs = bs

2 exs + κ1(z, exs).

Since for all x and exs
,
∣∣g(x)

∣∣ 6 1, the function κ1 can be
upper bounded by∣∣κ1(z, exs

)
∣∣ 6 bs

2

∣∣exs

∣∣+
∣∣∣ε (bs (z))− ε (bs (z − exs

))
∣∣∣

6
(
γ + bs

2 + 1
) ∣∣exs

∣∣.
In this light, the error dynamics in (4) are rewritten as

ė = (−τ1 − τ2LC)e+ τ1bκ1(z, exs)

= Ae+ κ2(z, e)
(5)

with

τ1 =

 1
τs

0 bs
2

0 1
τp

0

0 0 0

 , τ2 = diag( 1
τs
, 1
τp
, 1),

L = [l1, l2, l3] and b = [1, 0, 0]T . Thus, the error dy-
namics are written in the form of a perturbed linear
differential equation with a perturbation term satisfying
‖κ2(z, e)‖ 6 (γ + bs/2 + 1/2) τs ‖e‖ , with an upper-bound
depending only on the Lipschitz-constant of g and bs.

For all distinct non-zero τp and τs, the pair (−τ1, C) is
observable, i.e. the spectrum of −τ1 − τ2LC can be made
arbitrary by an appropriate choice of the observer gains l1,
l2 and l3. In particular, it can be made Hurwitz, so that
the origin of the system ė = Ae is globally exponentially
stable. Let P = PT > 0 be the solution of the Lyapunov
equation PA+ATP = −Q, with Q = QT > 0, and V (e) =
eTPe a Lyapunov function candidate. Its derivative along
the solutions of (5) satisfy

V̇ (e) = −eTQe+ 2eTPg(z, e)

6 −λmin(Q) ‖e‖2 + 2γ̄λmax(P ) ‖e‖2 ,
with γ̄ = γ + bs/2 + 1/2. Hence, the origin of the er-
ror dynamics is globally exponentially stable if γ̄ <
λmin(Q)/(2λmax(P )).

The strength of the foregoing proposition are the very
general assumptions on the function g that are always
met in practice. Hence, no specific form is required for the
global exponential stability of the origin of (4). The ratio
λmin(Q)/(2λmax(P )) is maximized when Q is the identity
matrix. See for instance Khalil (2002). The maximum
eigenvalue of P can be upper bounded using the results in
Mori et al. (1986). The ideas developed in the proofs of the
last section can be generalized to show that the error will
be bounded in the presence of parameter uncertainties and
errors stemming from the approximation the heart rate.

5. ESTIMATION OF THE CONCENTRATIONS AND
AN EXCITATION OF THE PARASYMPATHETIC

SYSTEM

5.1 Observer

For a piecewise constant external excitation xp of the
parasympathetic system the model can be summarized as
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Fig. 1. Activity of the parasympathetic system with exter-
nal excitation

τsċs = −cs + g
(
bsδ

θsνs

) (
1− g

(
as

(
δθpνp + xp

)) )
τpċp = −cp + g

(
bp
(
δθpνp + xp

))
ẋp = 0,

h = f(cs, cp),

with the initial conditions cs(t0) = cs0, cp(t0) = cp0 and
xp(t0) = xp0.

To simplify the analysis, the parameters of the system are
assumed to be perfectly known. It is also assumed that the
function f is linear in the concentrations, i.e. it is defined
as in (1i). The ansatz

τs ˙̂cs = −ĉs + g
(
bsδ

θsνs

) (
1− g

(
as

(
δθpνp + x̂p

)) )
+ l1(h− ĥ)

τp ˙̂cs = −ĉp + g
(
bp
(
δθpνp + x̂p

))
+ l2(h− ĥ)

˙̂xp = l3(h− ĥ)

ĥ = f(ĉs, ĉp),

(6)

of a nonlinear observer with parameters l1, l2, l3 ∈ R and
state [ĉs, ĉp, x̂p] is considered. The state and initial con-
ditions are ĉ = [ĉs, ĉp, x̂p]T , and ĉ(t0) = [ĉs0, ĉp0, x̂p0]T ,
respectively. Proving the exponential convergence of the
estimated quantities towards the true ones can be done
using the same approach as in the sympathetic excitation
case.

5.2 Simulations

The complete model of the autonomic-cardiorespiratory
system developed in Seidel (1997) is simulated with an
external excitation of the parasympathetic system. The
observer in (6) is implemented such that all physical pa-
rameters including those in (1a)-(1c) have 10% variation
from the nominal ones given in Seidel (1997). The param-
eters of the heart rate approximation are h0 = 1.11 s−1,
α = 2.01 s−1 and β = 20.45 s−1. The initial condition
observer state is zero. The time derivative of the pressure
is computed numerically using an algebraic derivative esti-
mator. The gains of the observer are l1 = 2 s, l2 = −5 s and
l3 = −200 mmHg. The saturation function is chosen to be
the tanh function. The parameters in (1) where identified
in Seidel (1997) such that the concentrations cs and cp are
unitless.



Table 1. Mean relative errors for the interval
[60 s, 120 s]

symp. para. h excitation

true param. 16% 5% ≈ 0% 5%
app. param. 20% 8% ≈ 0% 9%
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Fig. 2. Concentration of the neurotransmitter of the
parasympathetic system
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Fig. 3. Concentration of the neurotransmitter of the sym-
pathetic system

The comparison of the estimated quantities and the true
ones are given in Fig. 1,3, and 2. This simulation shows
that despite the very coarse approximation of the heart
rate by a linear combination of the concentrations of the
neurotransmitters, the estimation of the external excita-
tion yields acceptable results. However, the error in the
estimation of cs and cp motivates the use of a more com-
plex approximation.

Table 1 summarizes the mean relative estimation errors for
the neurotransmitter concentrations and the excitation for
the time interval [60 s, 120 s]. The values for an observer
using the true parameters are given as a reference. These
errors are stemming solely from the approximation of the
heart rate.
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