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Abstract: For people with type 1 diabetes and some with type 2 diabetes, the problem of
insulin titration, i.e. finding an adequate basal rate of insulin, is a complex and time-consuming
task. This paper proposes a simple model-free algorithm and a procedure for fast initial
titration in people with type 1 diabetes (T1D). A modified proportional-integral-derivative
(PID) controller (i) updates the estimated insulin basal rate, and (ii) administers micro-boli of
insulin every 5 minutes using glucose measurements from a continuous glucose monitor (CGM).
A bolus calculator mitigates the effect of meals and reduces postprandial peaks. We evaluate
the performance of our system qualitatively and numerically using a virtual clinic of 1,000 T1D
patients with a broad inter-patient variability representative of a real population of people with
T1D. We let the titration phase run for three consecutive days, followed by a three-day test
phase using the newly computed basal insulin infusion rate. The proposed algorithm is able to
provide a safe titration and individualized treatment for people with T1D.

Keywords: Control algorithm, PID, Feed-forward control, Run-to-run control, Diabetes,
Artificial pancreas.

1. INTRODUCTION

Type 1 diabetes (T1D) accounts for around 10% of the
463 million people living with diabetes worldwide. Due
to autoimmune β-cell destruction, people with T1D are
unable to produce insulin. Life-long treatment using daily
insulin injections is vital to avoid an elevated blood glu-
cose (BG) level (Riddle et al., 2018). Common ways to
administer insulin are multiple daily injections (MDI) and
continuous subcutaneous insulin infusion (CSII) therapy.
MDI therapy uses pens to administer long-acting insulin
once daily and rapid-acting insulin several times per day,
usually before meals. CSII therapy uses a pump to contin-
uously administer a rapid insulin analogue.

The artificial pancreas (AP) provides closed-loop insulin
therapy for T1D, and has even been considered to treat
some people with T2D (Bally et al., 2018; Taleb et al.,
2019). The AP consists of (i) a continuous glucose monitor
(CGM), (ii) a control algorithm and (iii) a CSII pump.
The CGM provides frequent glucose measurements, typ-
ically every 5 minutes. The control algorithm resides on
a smartphone for most prototypes (Cobelli et al., 2012;
Kovatchev et al., 2013), but for commercial systems the
control algorithm should preferably be embedded on the
pump.

Several control technologies have been considered for the
AP, such as linear model predictive control (MPC) (Eren-
Oruklu et al., 2009; Schmidt et al., 2013; Boiroux et al.,
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2018), nonlinear MPC (Hovorka et al., 2004; Boiroux
and Jørgensen, 2018), fuzzy logic control (Biester et al.,
2019), and proportional integral derivative (PID) control
(Marchetti et al., 2006, 2008; Ly et al., 2016). Although
MPC-based APs showed similar or slightly better perfor-
mance in clinical studies than PID-based APs (Steil, 2013;
Pinsker et al., 2016), PID technology has proven to be
successful in currently available hybrid control systems
(Laxminarayan et al., 2012; Ly et al., 2017). The PID-
controller can easily be implemented using simple tuning
rules, does not require any metabolic model of the insulin-
glucose dynamics, and mimics the behavior of the pancreas
for a healthy patient (Steil et al., 2004).

The initial use of CSII can be challenging considering the
need of estimating the insulin basal rate that brings the
BG level to a safe range (King et al., 2016). The basal
rate needs to be high enough to lower the glucose level.
However, too much insulin causes hypoglycemia and in
worst case can be fatal. To estimate the initial basal rate
for adult patients in todays CSII treatment, the healthcare
professionals calculate the initial basal rate. Either based
on the total daily dose (TDD) of MDI or on a combination
of the TDD with a body-weight-based method (King, 2012;
Chow et al., 2016; Bode et al., 2011). A recent study shows
that the TDD method underestimated the patients basal
rate with a median error of 10.06%, while the body weight-
based method overestimates the patient’s basal rate with
a median error of 11.1% (Chow et al., 2016).

As an approach to find a safe basal rate for CSII treatment
when the TDD is unknown, e.g. for insulin naive patients,
we present an implementation of a model-free controller



for initial titration of people with T1D. The proposed
controller is a modified PID-controller in the sense that it
uses a deadband and contains an anti-windup algorithm.
A further modification is that at mealtimes, we suspend
the PID-controller for 5.5 hours and give bolus insulin
to compensate for the carbohydrates (CHO) intake. To
find the estimated basal rate, the patients use an AP with
the PID-controller in a three days titration phase. When
the estimated basal rate is obtained, we let the study
continue with a three days test phase, to test the suggested
basal rate. We evaluate the performance of the method
by simulating a cohort of 1,000 random generated virtual
patients.

The rest of the paper is structured as follows. Section 2
describes the control algorithm. We define the scenario
and the simulator used for in silico trials in Section 3. The
results are presented in Section 4, the discussion in Section
5, and the conclusion in Section 6.

2. CONTROL ALGORITHM

People with T1D need basal insulin to compensate for
the long-term endogenous glucose production, and bolus
insulin to control the glucose level after intake of CHO.
For each discrete time, tk, the insulin pump administers
the total amount of insulin, utot(tk), given by,

utot(tk) = umicro−bolus(tk) + ubolus(tk). (1)

umicro−bolus(tk) is the amount of micro-bolus insulin re-
quired to manage the endogenous glucose production, and
ubolus(tk) is the bolus insulin estimated to compensate for
the intake of CHO. The micro-bolus insulin basal rate is
calculated as,

ūmicro−bolus(tk) =
umicro−bolus(tk)

∆tk
= ūbasal(tk) + v̄(tk).

(2)

The nominal basal rate is described by ūbasal(tk) and v̄(tk)
is the adjustments in the basal rate. ∆tk = Ts denotes the
time interval the calculated basal rate will be applied for
i.e. the sampling time (Jørgensen et al., 2019).

2.1 Filter

The derivative term of the PID-controller is highly sen-
sitive to noise. Though modern CGM systems provide a
filtered signal, a first order low-pass filter in discrete time is
implemented before computing the basal rate. The filtered
CGM-signal yF (tk) is calculated as,

yF (tk) = αyCGM (tk) + (1− α)yF (tk−1), (3)

where the smoothing factor α = 0.2, corresponding to a
time constant of approximately 20 minutes, and yCGM (tk)
is the signal provided by the CGM.

2.2 Micro-bolus and basal rate

The basal insulin rate for controlling the glucose level is
conducted by a PID-controller using the filtered CGM-
signal yF (tk). In continuous time, we consider a PID-
controller defined by,

v̄(t) = Kp(ȳ(t)− yF (t)) +Ki

∫ t

0

ei(τ)dτ −Kd
dyF (t)

dt
, (4)

where Kp,Ki, and Kd denote the proportional, integral,
and derivative gains. ȳ(t) is the glucose target and ei(τ) is
the error at the integral. The discrete-time PID-controller
corresponding to the continuous-time PID-controller is

v̄(tk) = Kp(ȳ(tk)−yF (tk))+I(tk)−Kd

Ts
(yF (tk)−yF (tk−1)).

(5)

The sampling time, Ts, equals the sampling rate of the
CGM, commonly 5 minutes. I(tk) describes the changes
in the basal rate and can be expressed as,

I(tk) = I(tk−1) +KiTsei(tk). (6)

The error term ei(tk) has an integral deadband in the
range from 4 to 8 mmol/L. The deadband prevents the
integrator from integrating when the glucose level is inside
the range of the deadband,

ei(tk) =

{
llow − yF (tk), yF (tk) ≤ llow,
0, llow < yF (tk) ≤ lup,
lup − yF (tk), yF (tk) > lup,

(7)

where llow and lup are the lower and upper limits of the
target range. To avoid integrator windup and negative
micro-bolus rate, ūmicro−bolus(tk) is limited to the interval
[0, Umax], where Umax = 12 mU/min for the first 12 hours
of simulation while the virtual patients are fasting, and
afterwards at the time t = 12 hours, the limit is set to
Umax = 2I(tk−1). The micro-bolus rate ūmicro−bolus(tk) is
then,

ūmicro−bolus(tk) = min(max(0, ūbasal(tk) + v̄(tk)), Umax).
(8)

For patients with low insulin sensitivity the limit on
12 mU/min will in some cases be too insufficient to
influence the BG. Therefore, before Umax is changed from
12 mU/min to 2I(tk−1), we measure the filtered CGM
signal yF (tk). If yF (tk) is in the hyperglycaemic range above
yhyper = 10 mmol/L, and the basal rate after 12 hours is
limited to Umax, then I(t12hours) is set to Umax,

I(t12hours) =

{
Umax, (yF (tk) > yhyper)∧

(ubasal(tk) = Umax),
I(tk), otherwise.

(9)

The above definition of the micro-bolus rate consists of
the estimated basal rate as well as corrections computed
by the PD-controller. Hence, the estimated basal insulin
rate is

ûbasal(tk) = ūbasal(tk) + I(tk) (10)

2.3 Bolus calculator

To balance the glucose level after intake of CHO, people
with T1D need bolus insulin. The size of the bolus is
calculated using a bolus calculator. Common equations
for bolus calculation typically exist of three parts 1) meal
insulin, 2) correction insulin, and 3) insulin on board (IOB)
(Schmidt and Nørgaard, 2014). The equation is given as
(Jørgensen et al., 2019)



ubolus(t) =
d̂(t)

carbF
+ αcorr

yF (t)− ȳ(t)

corrF
− αIOBIOB(t).

(11)

For this paper we only use the meal insulin part of
the bolus calculator, and assume that the PID-controller
used for the basal rate will do the corrections of the
error (Jørgensen et al., 2019). The equation for the bolus
calculator is given by

ubolus(t) = ICR · d̂(t), (12)

where ICR = 1/carbF and d̂(t) is the estimated amount
of CHO in grams in the meal. ICR (U/gCHO) is the
insulin to CHO ratio, i.e. ICR denotes the amount of
CHO covered by 1 unit of insulin. Appendix A reports
the procedure for computation of the ICR in this paper.

3. SCENARIO

To evaluate the control algorithm, we use a simulator
based on the physiological model developed by Hovorka
et al. (2004). The Hovorka model describes the metabolic
system for people with T1D. It interprets the pharmacoki-
netic (PK) and pharmacodynamics (PD) response of sub-
cutaneous insulin infusion, CHO absorption, and insulin
action.

In the scenario, we simulate a population of 1,000 ran-
domly generated virtual patients. The parameter distri-
bution is stated in Hovorka et al. (2002); Wilinska et al.
(2010) and Boiroux et al. (2018). The first three days of the
scenario is the titration phase. In this phase, the virtual
patients use an AP with the PID-controller to estimate the
basal rate. The titration phase is followed by a three-day
test phase where we test the estimated basal rate.

We start the study at 18:00 assuming that the patient has
not taken any dinner to initiate the titration overnight. For
the remaining time of simulation an intake of 60 g, CHO is
simulated at 6:00 AM and at 12:00 PM, and an intake of
90 g CHO is simulated at 6:00 PM. The controller gets an
announcement at mealtimes, and a bolus is calculated to
correct the glucose level after CHO intake. In the titration
phase, the PID-controller is suspended for 5.5 hours after
a meal, and the basal rate is fixed to the last calculated
rate before the meal announcement.

4. RESULTS

Fig. 1 illustrates the glucose concentration, the CHO in-
take, the bolus insulin administration, the micro-bolus
insulin administration and the estimated basal insulin for
10 virtual patients. The first chart shows the glucose con-
centration, where the postprandial peaks are a response to
the CHO intake shown in the second chart. The amplitude
of the peaks depends on the amount of CHO and the
ratio between the time constants for CHO absorption and
subcutaneous (sc) insulin absorption (El Fathi et al., 2018;
Boiroux and Jørgensen, 2018). The third chart shows the
calculated bolus based on the estimated amount of CHO
intake and the virtual patients ICR. After the first 12 hours
of simulation, Umax is set to 2I(tk−1), which is reflected
by the adjustments in the micro-bolus rate in the fourth

Fig. 1. Simulation of 10 virtual patients. The titration
phase runs for three days, followed by a three-day test
phase using the estimated basal rate.

Table 1. Distribution of time spend in different
glucose concentration ranges during the titra-
tion phase for a population of 1,000 virtual

patients.

Glucose(mmol/L) Mean Q1 Q2 Q3

0 ≤ G < 3 0.0% 0.0% 0.0% 0.0%

3 ≤ G < 3.9 0.2% 0.0% 0.0% 0.0%

3.9 ≤ G ≤ 10.0 77.7% 71.9% 77.4% 84.6%

10.0 < G ≤ 13.9 19.2% 15.0% 19.7% 23.3%

13.9 < G ≤ 26.1 3.0% 0.0% 0.6% 3.8%

chart. The integrator value emulates the basal rate that
we aim to find and is shown in the fifth chart of the figure.

We evaluate the performance of the controller based on
the three-day test phase using the estimated basal rate.
The mean of the estimated basal rate for the virtual clinic
is 8.04 mU/min with a minimum of 5.06 mU/min and a
maximum of 29.86 mU/min.

A cumulative distribution was performed on the glucose
values of the 1,000 virtual patients in the test phase. Fig.
2 illustrates the result for the cumulative distribution with
a mean time in range (TIR) of 78.5%.

Tables 1 and 2 report the population distribution of
the time spent in different glucose concentration ranges.
Figure 3 illustrates the glucose concentration trajectory
for the patient having the worst hypoglycemic episodes
(lowest and most time spent in hypo). From these results,
it is clear that while the titration is not perfect, it improves
current practice and leads to no severe situations.

Recommendations from the International Consensus on
TIR (Battelino et al., 2019) states that people living with
T1D should spend above 70% time in target range (3.9
-10.0 mmol/L), less than 4% below 3.9 mmol/L, less than



Fig. 2. Cumulative distribution of glucose values, for 1,000
virtual patients in the test phase.

Fig. 3. Profiles for the patient with most time in the
glucose concentration range 0 ≤ G < 3. Notice that
the time in severe hypoglycemia is very limited and
not due to the basal insulin rate being too high.
Rather it is due to an overestimated insulin bolus to
compensate for the meal.

1% below 3.0 mmol/L, less than 25% above 10.0 mmol/L
and less than 5% above 13.9 mmol/L.

In respect to hypoglycemia in our scenario, 2 out of 1,000
virtual patients spend more than 1% below 3.0 mmol/L in
the titration phase. In the test phase the number increases
to 5 virtual patients, with a minimum of 2.4 mmol/L for
both phases. 20 out of 1,000 virtual patients spend more

Table 2. Distribution of time spend in differ-
ent glucose concentration ranges during the
test phase for a population of 1,000 virtual

patients.

Glucose(mmol/L) Mean Q1 Q2 Q3

0 ≤ G < 3 0.0% 0.0% 0.0% 0.0%

3 ≤ G < 3.9 0.9% 0.0% 0.0% 0.0%

3.9 ≤ G ≤ 10.0 78.5% 72.1% 78.0% 84.6%

10.0 < G ≤ 13.9 16.5% 13.3% 17.7% 20.8%

13.9 < G ≤ 25.9 4.1% 0.0% 0.0% 6.8%

than 4% below 3.9 mmol/L in the titration phase. In test
phase the number increases to 59 virtual patients.

200 out of 1,000 virtual patients did not achieve the goal
of 70% TIR during the titration phase. In the test phase
the number decreases to 183 virtual patients.

Regarding hyperglycemia 161 out of 1,000 virtual patients
spend more than 25% above 10.0 mmol/L in the titration
phase while the number decreases to 53 in the test phase.
204 out of 1,000 virtual patients spend more than 5%
above 13.9 mmol/L in the titration phase, and in the test
phase the number increases to 294.

By using the suggested method, we can get 61.9% of the
virtual patient to achieve the recommendations within a 6
days study.

5. DISCUSSION

We evaluated the performance of our system on a virtual
clinic of 1,000 T1D patients with a broad inter-patient
variability representative of a real population of people
with T1D.

It is important to note that the implemented model does
neither account for patient intraday variability nor changes
in ISF and ICR over time. The effect of exercising or
inactivity, e.g. during sleep, is not considered in this paper.
In real life, T1D patients in CSII treatment will schedule
their basal rates throughout the day. In our test phase we
do not tailor the basal rate to the time of the day, which
will leave room for improvement of the study. Before the
method can be implemented in a real life scenario, we need
to obtain the ICR for the patient (King, 2012). In this
paper, we use the approach described in Appendix A.

By analyzing our simulations, we can tell that the reason
some of the virtual patients suffer from hypoglycemia is
mainly due to the bolus insulin. Different bolus adminis-
tration strategies have an impact on glucose regulation for
people with T1D. A more sophisticated bolus calculator
could therefore be considered as described in Boiroux et al.
(2017), but that would require to identify a T1D model for
every patient, and is beyond the scope of this paper.

When the patients start the titration phase, the basal rate
is unknown. If we should have used an MPC instead of
a PID-controller, we would have needed a good guess on
the initial basal rate. Though the MPC might perform
better in the long run, it is not suited for the goal of this
paper. In addition, after the titration phase is over, and
the estimated basal rate is found, it could be considered to



initialize a treatment using an AP with an MPC. Due to
cost or individual preferences other patients might prefer
to continue the treatment using CSII or MDI.

The goal we use for TIR is internationally recommended.
However, goal-settings for glucose regulation should be
individualized due to achievable goals for the single patient
(Battelino et al., 2019). Large real-world data and studies
shows that the average T1D patient’s TIR usually lies
between 50%-60% (Beck et al., 2019). Therefore, a goal
at 70% TIR may not be achievable for all patients. In our
results, we stated that it was not possible for all 1,000
virtual patients to reach the goals recommended by the
International Consensus within the 6 days scenario; but
the majority of patients are better off with the the titration
method suggested in this paper.

6. CONCLUSION

In this paper we propose a method for initial titration
based on a modified PID-controller combined with a
simple bolus calculator. We construct a 6 days scenario
consisting of a three days titration phase followed by a
three days test phase. In the titration phase, we use an
AP with the PID-controller. At mealtimes, we calculate
a bolus, suspend the controller for 5.5 hours, and set the
basal rate to a fixed rate. When the titration phase ends,
we switch off the controller and test the estimated basal
rate in a three days test phase. The performance of our
system is qualitatively and numerically evaluated using a
virtual clinic of 1,000 T1D patients.

Goal-settings and treatment of people living with T1D
should be individualized. While our method may not be
suited for all, we can get 61.9% of the virtual patients
to achieve the recommendations from the International
Consensus on TIR within a 6 days study.

The results indicate the potential of the method com-
pared to conventional titration. Further studies of the pro-
cess and clinical studies are required before the titration
method can be recommended for clinical practice.

Appendix A. BOLUS CALCULATOR AND
INSULIN-TO-CARB RATIO

To estimate the ICR for the virtual patients in the model,
we use the penalty function described below to find the
bolus size for meals in the range 20 g to 120 g of CHO
with an increment of 20 g CHO. When the bolus for the
different meal sizes are obtained, linear regression is used
to find the insulin to CHO ratio.

As described in Boiroux and Jørgensen (2018) and in
Jørgensen et al. (2019), the quadratic glucose penalty
function is given by

ρ̄(z(t), z̄) =
1

2
(z(t)− z̄)2, (A.1a)

ρmin(z(t), z̄min) =
1

2
(min{0, z(t)− z̄min})2, (A.1b)

ρmax(z(t), z̄max) =
1

2
(max{0, z(t)− z̄max})2, (A.1c)

in which z(t) denotes the predictive BG concentration, and
the glucose setpoint z̄ is set to 6.0 mmol/L. The lower

threshold is zmin = 5.3 mmol/L, and the upper threshold
is zmax = 8.3 mmol/L. The penalty function is defined as

ρ(z(t)) = ρ̄(z(t), z̄)+κρmin(z(t), z̄min)+λρmax(z(t), z̄max),
(A.2)

where κ and λ are weights associated with hypoglycemia
and hyperglycemia, respectively. Since we want the bolus
calculator to safely mitigate the effects of CHO intake,
i.e. to avoid postprandial hypoglycemia, we set κ � λ.
The optimal bolus size, ubolus, for a given estimated meal

size, d̂, from a steady state, xss, and with subsequent
administration of the basal insulin rate, ubasal, is given by
minimizing the area under the glucose penalty function

curve, i.e. ubolus = ubolus(d̂;xss, ubasal) is obtained by
solution of the following univariate optimization problem:

min
ubolus

φ =

∫ tN

t0

ρ(z(t))dt, (A.3a)

s.t. x(t0) = xss + Γuubolus + Γdd̂, (A.3b)

ẋ(t) = f(x(t), ubasal, 0), t ∈ [t0, tN ], (A.3c)

z(t) = g(x(t)), t ∈ [t0, tN ], (A.3d)

0 ≤ ubolus ≤ ubolus,max. (A.3e)
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