
Fast transient optimization of social distancing
during Covid-19 pandemics using extremum

seeking

Laurent Dewasme ∗ Alain Vande Wouwer ∗

∗ Systems, Estimation, Control and Optimization (SECO), University of Mons
(UMONS), 7000 Mons, Belgium.

Abstract: In this work, the application of a model-free extremum seeking strategy is investigated to
achieve the hypothetical control of the covid-19 pandemics by acting on social distancing. The advantage
of this procedure is that it does not rely on the accurate knowledge of an epidemiological model and
takes realistic constraints into account, such as hospital capacities. The simulation study reveals that
the convergence has two time scales, with a fast catch of the transient optimum of the measurable cost
function, followed by a slow tracking of this optimum following the original SIR dynamics. Several
issues are discussed such as quantization of the sanitary measures.
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1. INTRODUCTION

Since January 2020, our societies have been deeply impacted by
the covid-19 pandemics. In this context, mathematical model-
ing and numerical simulation of the virus spread as a function of
several factors, including social distancing, testing and quaran-
tining, mobility restrictions and vaccination, have been playing
a key role in the decision policy of many governments world-
wide (McBryde et al., 2020). These models provide predictions
based on historical data and can be used to develop hypothetical
control strategies. For instance, Tsay et al. (2020) propose an
optimal open-loop control approach and suggest that on-off
policies alternating between strict social distancing and relax-
ing can be effective at flattening the infection curve. Further,
Köhler et al. (2020) investigate open-loop optimal control as
well as model predictive control (MPC) with on-line adaptation
of the social policy constraint, and robust MPC using interval
state estimation to take account of uncertainties in the model
and measurements. In the same spirit, Péni et al. (2020) develop
a MPC control strategy taking account of time-dependent spec-
ifications and logical relations between model variables, and
multiple predefined discrete levels of governmental interven-
tions (control input quantization). As all the model variables
are not accessible to measurements, it is necessary to develop
state estimators in order to apply full-state feedback, which
poses additional challenges. In (Köhler et al., 2020), an interval
observer is developed whereas an observer for Linear Parameter
Varying (LPV) systems is designed in (Péni et al., 2020).

As stressed in these publications and more globally in (Eker,
2020), one can of course question the validity of the dynamic
prediction models, and the objective of the present study is
to investigate the use of model-free optimizing control, and
particularly extremum seeking control (ESC; see for instance,
Tan et al. (2010); Dewasme and Vande Wouwer (2020), for
reviews of ESC developments over the last decades), to infer
control measures. The main condition to apply model-free ESC

? e-mail: laurent.dewasme,alain.vandewouwer@umons.ac.be

is the existence of a measurable convex cost function, and a
candidate function is proposed in this work.

The paper is organized as follows. The next section presents
the epidemiological model used in (Tsay et al., 2020) as an
emulator of the population behavior to test our ESC approach.
Section 2.2 computes the equilibrium points of the model, and
evidences a bifurcation behavior depending on the level of
social distancing. In Section 2.3, a measurable cost function is
proposed, which will use the concept of barrier functions, and
serves as basis for ESC, which is discussed in section 3. The
numerical application is detailed in section 4, where the two
time scales of the convergence is highligted and the issue of
quantization of the measures is introduced. The final section is
dedicated to conclusions and research perspectives.

2. COVID-19 OUTBREAK MODELING

2.1 SIR modeling

Epimedics modeling is classically based on compartmental
population models describing the transitions between suscepti-
ble, infected and recovered (SIR) states. Regarding the COVID-
19 outbreak, the compartmental SEAIR model of Tsay et al.
(2020) is considered, which also accounts for the asymptomatic
population A(t) (this class of individuals gathers cases which
are not detected due to asymptomatic conditions, or due to
the lack of testing) as well as the exposed population E(t).
The model also includes mortality, with a population P(t) who
perishes in the epidemy. On a relatively short time span (cor-
responding to the study of the epidemy), the total population
N can however be assumed constant as the death rate is for-
tunately quite small and other phenomena such as natality are
not considered in the model. Depending on the point of view
of the analysis, we will therefore consider the actual death rate
or neglect it. The dynamics of the compartmental model can
be written under the form of an ordinary differential equation
system:



dS
dt

=
−αa(t) S(t) A(t)−αi(t) S(t) I(t)

N
+ γ R(t) (1a)

dE
dt

=
αa(t) S(t) A(t)+αi(t) S(t) I(t)

N
− l E(t) (1b)

dA
dt

= l E(t)−κ(t) A(t)−ρ A(t) (1c)

dI
dt

= κ(t) A(t)−β I(t)−µ I(t) (1d)

dR
dt

= ρ A(t)+β I(t)− γ R(t) (1e)

dP
dt

= µ I(t) (1f)

where N is the total population and S, E, A, I, R, and P are,
respectively, the susceptible, exposed, unreported infected (or
asymptomatic/unconfirmed), reported/confirmed infected, re-
covered and perished populations. The parameters αa and αi are
the rates of exposure to the A and I populations, respectively.
αa characterizes, in a broad sense, social distancing and αi,
quarantining, and can be considered as manipulated (control)
inputs from a system and control perspective, as well as the
screening/testing rate κ. Constant (at least in first approxima-
tion) parameters account for the (inverse of the) latent period of
the virus l which is set to 0.5 days−1, the infectious period of
unconfirmed cases ρ set to 0.1 days−1 and the recovery rate β

set to 0.025 days−1. These parameters are representative of the
situation in the US in 2020 according to (Tsay et al., 2020). The
reader is referred to this publication for further details about
parameter estimation. Of course, other parameter values may
be adopted according to the region of the world, the status of
the pandemics and the available data sets.

2.2 Bifurcation analysis

We first neglect the death rate µ and consider a constant total
population N with a 5-compartment model, for which we com-
pute two equilibrium points:

Point 1:

Sss = N (2a)
Ess = 0 (2b)
Ass = 0 (2c)
Iss = 0 (2d)

Rss = 0 (2e)

which corresponds to the extinction of the infection, and

Point 2:

Sss = K1N (3a)

Ess = K1
αaAss +αi

κ

β
Ass

l
(3b)

Ass =
N (1−K1)

K2
(3c)

Iss = Ass
κ

β
(3d)

Rss =
ρAss +βIss

γ
(3e)

where

K1 =
β(κ+ρ)

αaβ+αiκ
(4a)

K2 = ρ+κγ+
κ

β
+

K1

l

(
αa +αi

κ

β

)
+1 (4b)

which corresponds to the stabilization of the epidemy at some
level. This latter solution is of course constrained by the posi-
tivity of the states.

Stability can be analysed locally considering the eigenvalues of
the Jacobian matrix, which reads around an equilibrium point:

Jac =


−αa

Ass
N −αi

Iss
N 0 −αa

Sss
N −αi

Sss
N γ

αa
Ass
N +αi

Iss
N −l αa

Sss
N αi

Sss
N 0

0 l −κ−ρ 0 0
0 0 κ −β 0
0 0 ρ β −γ

 (5)

For the selected parameter values (shown in table 1), model (1)
exhibits two different dynamic behaviors in the selected work-
ing range of αa = [0.05 0.4]. Figure 1 shows the evolution of
the eigenvalues of (5) with respect to the input αa. It is apparent
that the system presents a bifurcation as the eigenvalues switch
values around a critical αa,c. Table 2 shows the evolution of
the steady-state infected population as a function of αa. When
the latter is smaller than αa,c, the state trajectories converge to
the equilibrium 1 whereas, when αa is larger than this critical
value, the system converges to equilibrium 2. In this case, the
imposed social distancing allows stabilizing the pandemics but
no longer extincting it.
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Fig. 1. Evolution of the Jacobian eigenvalues of (5) with respect
to social distancing αa, for a specific parametrization.

2.3 Social distancing - cost function

Several published studies report on optimal control and model
predictive control of Covid-19 outbreak. These approaches re-
quire the knowledge of a dynamic model in the form of equa-
tions (1) and some provision to account for parameter uncer-
tainties and provide some robustness to the control structure.

However, without effective and fast adaptation of the model
parameters when the pandemic dynamics evolves, as it is cur-
rently observed with the appearance of mutant strains, the ef-



Table 1. Parameter values applied to model (1)

N αi [d−1] κ [d−1] β [d−1] l [d−1] ρ [d] γ [d−1] Ire f αa,re f [d−1] ηψ ηφ ηP ε

1.1 107 0.01 0.3 0.025 0.5 0.1 0.1 2 0.5 1 1 200 0.3

Table 2. Evolution of the steady-state total infected
cases with respect to social distancing.

αa [d−1] 0 0.1 0.2 0.25 0.3 0.4 0.5
Iss [106] 0 0 0 0 0.35 1.71 2.63

fectiveness of these NMPC formulations may seriously drop.
A model-free control strategy driven by a measurable cost
function then becomes an appealing alternative allowing key
parameter adaptation.

A typical measurable cost function may either aim at minimiz-
ing the number of fatalities under sanitary policy constraints
(Köhler et al., 2020) or minimizing social distancing, focusing
on psychological health (Tsay et al., 2020; Elie et al., 2020),
under constraints such as hospital bed capacity. The latter ap-
proach is selected in this work. The proposed optimizing con-
trol strategy therefore aims at minimizing the following cost:

J =−αa +ψ+φ (6)

where −αa represents social distancing while ψ and φ are
respectively a logarithmic barrier on the infected cases and a
penalty constraint on the comfort of social distancing:

ψ =−ηψln
(

I(t)− Ire f

ε

)
(7a)

φ = ηφ max
(
0,(αa,re f −αa)

3) (7b)

where ηψ, ηφ and ε are design parameters. Ire f represents the
critical level of infections, corresponding to a number of in-
fected people which might lead to an overflow of intensive
care hospitalizations. αa,re f is the penalty reference for social
distancing, i.e., a level at which people will start feeling psy-
chologically affected.

In order to avoid possible numerical issues during transient
phases, Srinivasan et al. (2008) recommend to approach (7a)
by a combined barrier-penalty expression such as:

ψB =

{
ψ i f I(t)− Ire f ≥ ε

0 i f I(t)− Ire f < ε
(8)

which is active in the feasible region I(t)− Ire f ≥ ε and

ψP =

{
0 i f I(t)− Ire f ≥ ε

ηP (Ire f − I(t)+ ε) i f I(t)− Ire f < ε
(9)

which is active in the complementary region and where ηP is a
new design parameter.

In this way, the cost function can be rewritten as

J =−αa +ψB +ψP +φ (10)

Figure 2 shows the evolution of (10) as a function of αa
for a specific design of the constraints reported in Table 1.
The continuous and dashed lines respectively correspond to

the steady-state and transient (after 200 days) values of J.
The extremum seeking strategy that will be developed in the
next section will have to converge to the minimum of this
cost function as fast as possible, resulting in a ”catch” (the
transient optimum) and ”track” (its change over time up to an
hypothetical steady-state represented in Figure 2 as a curve with
a sharp corner) policy. Obviously, the proposed cost function
is convex and presents a unique extremum (minimum) but the
derivative at the extremum is discontinuous, which is a situation
that was already encountered in (Dewasme et al., 2011), and
has some potential challenge that will be discussed in the next
section.
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Fig. 2. Cost function evolution with respect to the input αa.
Continuous line: steady-state values. Dashed line: tran-
sient values after 200 days. Black star: steady-state opti-
mum

Other cost functions involving quarantining (αi) as well as
testing (κ) are left for further research at this stage.

3. CONSTRAINED DISCRETE EXTREMUM SEEKING

Extremum seeking (ES) is a real-time optimization (RTO)
strategy by direct input adaptation, which aims, by gradient
descent (or ascent) of a measurable cost criterion, at reaching
an optimum under necessary conditions of optimality (NCO).

Let us cast model (1) and cost function (10) under the following
generic nonlinear state-space form:

ẋ = f (x,u) (11a)
y =Cx (11b)
J = h(y(x),u) (11c)

where x∈ℜn is the state vector, u∈ℜr the input vector, y∈ℜm

the output vector, C the m× n measurement matrix, J the cost
function to be minimized.

In practice, for an ESC algorithm to work, a first assumption
relates to the existence of a unique couple of minimizers x∗
and u∗ under achievable steady-state conditions, and a second
assumption relates to the convexity of the cost function (Ariyur
and Krstic, 2003). These conditions are usually expressed in
terms of mathematical conditions on the first and second-order



derivatives of the cost function at the optimum, but this formu-
lation is not exploitable here, as the derivative is not continuous
at the optimum. In practice, this does not affect seriously the
performance of a first-order steepest descent algorithm, which
will locate the minimum and then oscillate around it (these
oscillations can be damped or avoided as in (Dewasme et al.,
2011), but we will not consider this aspect here).

Even if the SEAIR model (1) of the COVID-19 outbreak is
continuous, new measurement data occur with a daily sampling.
A discrete perturbation-based ES formulation is therefore well-
adapted, as shown in Figure 3.

Static Map

z−1
z+ fHP

×−kI
z−1

+

d = a cos(ω k Ts)

h

hHPξ̂û

u

Fig. 3. Discrete perturbation-based extremum seeking as pro-
posed by Choi et al. (2002).

The system input is excited by a periodic dither signal and
the cost function measurement is high-pass filtered in order to
recover the useful information at the dither frequency, rejecting
the continuous component of h. The filtered signal, hHP, is
then demodulated with the same dither signal, providing the
cost criterion gradient estimate ξ̂ = ∂̂h

∂u . Eventually, this gra-
dient is integrated to generate the input signal. The discrete
perturbation-based ES of Figure 3 is therefore governed by the
following equations:

hHP(k) = h(k)−hHP(k−1) fHP (12a)

u(k) =−kI ξ̂(k−1)+u(k−1) (12b)

ξ̂ = a cos(ωkTs)hHP (12c)

where fHP is the high-pass filter cut-off frequency, kI the inte-
grator gain, k is the discrete time variable and Ts the sampling
period.

Stability and convergence analysis are beyond the scope of this
paper and could constitute further research work. The reader
may however refer to Choi et al. (2002) and Ariyur and Krstic
(2003) for additional elements about the stability conditions of
the discrete perturbation-based ES as well as DeHaan and Guay
(2005), proposing an accurate analysis of the convergence of a
discrete perturbation-based ES strategy under state constraints
with barrier and penalty functions defined in (7).

4. SOCIAL DISTANCING REAL-TIME OPTIMIZATION

4.1 ESC application to the SEAIR model

The performance of the proposed ESC application to the SEAIR
model (1) with the cost function (10) is assessed in numerical
simulation. The ESC parametrization, based on the guidelines

Table 3. Parameter values of the ES algorithm

h [d−1] ω [d−1] a δ kI

0.99 2 π

50 0.05 0.01 0.1

of (Choi et al., 2002) and (DeHaan and Guay, 2005), is reported
in Table 3.

This table introduces a new parameter δ which aims at attenuat-
ing the magnitude of the dither signal a when approaching the
optimum neighborhood and therefore evolving as follows (Tan
et al., 2009):

ȧ =−δ a (13)

This attenuation will be particularly valuable in our situation
(discontinuous derivative at the optimum). The results shown
in Figures 4 to 6 demonstrate the fast convergence of the
adaptive method. Examining Figure 5, it can be observed that
the convergence time of the input signal αa is approximately
100 days. However, applying daily changes to a sanitary policy
is impractical as well as defining rules corresponding to each
specific social distancing level. Figure 7 shows a brute force
solution where the average input is discretized with a quantum
of 0.05, offering a more adequate way to underpin decision
making. A more rigorous approach could be the quantized ESC
proposed in (Guay and Burns, 2019), and is left for future
research.

Observing the recent evolution of the pandemics (in 2020-21),
this result seems quite realistic. Indeed, the sanitary policies
applied by the governments have been periodically tighten and
relaxed, instinctively searching for an optimum, as the proposed
ES strategy does.

It is important to notice that the convergence to the optimum
can be observed in two time scales: one corresponding to
the convergence of the input where J enters the optimum
neighborhood and another one which corresponds to the slow
system (1) dynamics. Indeed, Figure 4 shows that I takes more
than 3 years to vanish and Figure 6 highlights the remaining
small distance between the true steady-state optimum (red star)
and the transient optimum in t = 1000 days (blue star), proving
that the current method is achieving a fast transient optimization
with respect to the SEAIR dynamics. A faster extinction of I
could be expected considering other means of action such as
quarantining, testing, vaccination, and therapeutic treatment. A
multivariable extremum seeking framework could be applied in
further work, considering these additional means of action as
potential manipulated variables (Dewasme et al., 2021).

4.2 ESC application to the SEAIRP model

So far the mortality rate was neglected, and one may wonder
about the effect of this phenomenon on the proposed ESC
scheme. Two numerical simulations considering the mortality
rate equal to 0.001 d−1 (relatively low) and 0.05 d−1 (high) are
therefore achieved, without changing the ESC parametrization.
Figures 8 and 9 show the effect of µ which accelerates the
extinction of the infected population and, in turn, the system
dynamics. As a benefitial side effect (in terms of control),
the ESC reaches faster the steady-state optimum. However,
mortality unfortunately entails a decrease of the population.
This observation highlights the capability of the ESC strategy
to optimize social distancing while limiting the number of
infections.
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Fig. 4. Application of discrete ES to system (1) - time evolution
of the states.
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Fig. 5. Application of discrete ES to system (1) - time evolution
of the input αa and output J. In blue: ES signals - In red :
moving averaged ES signals.

5. CONCLUSION

This paper presents an extremum seeking strategy that aims
at determining an optimal level of social distancing so as to
limit the effect of the covid-19 pandemics. The advantage of
this strategy is that it does not rely on the knowledge of an
accurate epidemiological model, but only on the measurement
of a cost function related to a critical level of infection among
the population and a bearable range of social distancing. The
ESC is able to capture the optimum in a fast way and to
subsequently follow the dynamic change in the cost function.
The resulting policy consists in applying a set of discrete
social distancing recommendations. Ongoing research entails
multivariable extremum seeking acting on the combination of
several measures (quarantining, testing, vaccination), possibly
following the methodology recently developed in (Dewasme
et al., 2021). Another direction of research is the application of
quantized and saturated ESC as developed in (Guay and Burns,
2019).
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Köhler, J., Schwenkel, L., Koch, A., Berberich, J., Pauli, P., and
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Péni, T., Csutak, B., Szederkényl, G., and Röst, G. (2020).
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