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Abstract: Model-based approaches are often used to estimate mechanical properties of lungs, such as 

elastance (E) and airway resistance (R), during invasive and non-invasive mechanical ventilation (MV). 

Current models are less effective when spontaneous breathing is present. This analysis utilises b-spline 

functions within a single compartment model framework to identify patient-specific inspiratory driving 

pressure. A series of 2nd-order, constrained b-spline basis functions are used to identify inspiratory driving 

pressure breath to breath alongside single E and R using inspiration and expiration data from n=20 breaths 

for 10 patients ventilated using NAVA. Median [IQR] per patient RMS error for n = 20 breaths was 0.75 

[0.6 – 0.9] cmH2O, with elastance ranging from 2.1 – 29.8 cmH20/L, and per-patient median peak driving 

pressure ranging from -1.9 to -7.9 cmH2O. Inspiratory driving pressure profiles matched esophageal 

pressures from literature and its value at peak nervous signal to the diaphragm (Eadi) was correlated with 

peak Eadi (R2=0.25-0.86). Average trans-pulmonary pressure remained consistent between breaths for each 

patient, despite differences in peak Eadi and peak airway pressure. Overall, the model-based approach 

resulted in physiologically reasonable inspiratory driving pressures, with trends with electrical activity and 

matched literature data showing neuro-muscular decoupling as a function of pressure and/or volume.  
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1. INTRODUCTION 

Model-based approaches are often used to estimate lung 

mechanics properties during mechanical ventilation (invasive 

or non-invasive) (Chiew et al., 2011, Chiew et al., 2013, 

Morton et al., 2019a) or out-patient spirometry (Howe et al., 

2020a, Howe et al., 2020b). Lung elastance, or tissue stiffness, 

and airway resistance are commonly examined to assess lung 

function to optimise therapy (Chiew et al., 2011). 

The single compartment model for lung mechanics is 

ubiquitous within the field as a simple and readily identifiable 

model for bedside identification of basic lung properties 

(Bates, 2009). The model has been validated in fully sedated 

patients (Chiew et al., 2011), where all or most of the work of 

breathing (WOB) is performed by the ventilator. Spontaneous 

breathing effort, though often clinically desirable (Gama de 

Abreu et al., 2012, Neumann et al., 2005, Wrigge et al., 2003), 

complicates model analyses and masks identification of 

respiratory parameters (Chiew et al., 2018, Major et al., 2016, 

Redmond et al., 2019).  

In particular, the relative contribution of inspiratory effort, 

generating a negative driving pressure, and the opposing 

positive elastic pressure generated by volumetric expansion of 

the lung tissues, is difficult to elucidate from airway pressure 

alone. Measurements of inspiratory effort require an additional 

measurement, typically, esophageal pressure or the electrical 

activity of the diaphragm and/or surrounding musculature. 

Spontaneous breathing effort is common, driving, normal tidal 

breathing, as well as tidal breathing in patients receiving CPAP 

ventilation or participating in spirometry for lung function 

analysis. It is very important in the lead up to patient weaning 

from (invasive and non-invasive) mechanical ventilation 

(Gama de Abreu et al., 2012), where sedation minimization is 

desired, and in neonatal ICU (Kim et al., 2018). Thus, models 

able to capture and separate spontaneous vs. passive breathing 

mechanics are important for future directions in model-based 

therapies and their patient-specific optimization. 

This paper presents a simple, constrained b-spline model to 

estimate breath-to-breath spontaneous breathing effort in 

addition to lung elastance and airway resistance. 

2. METHODS 

2.1 Model 

Basic lung physiology and mechanics are shown in Figure 1, 

modelled using spring and damping terms. If the pressure drop 

across the airways is considered proportional to flow, 𝑄, the 

airway pressure (𝑃𝑎𝑤) is: 

𝑃𝑎𝑤 = 𝑃𝑎 + 𝑅𝑄 (1) 

Where 𝑃𝑎 is alveolar pressure and 𝑅 (cmH2O.s/L) is airway 

resistance. Trans-pulmonary pressure, Δ𝑃𝑇𝑃,  is characterized 

by lung elasticity (𝐸𝐿, cmH2O.s/L):  

Δ𝑃𝑇𝑃 =  𝑃𝑎 − 𝑃𝑝 = 𝐸𝐿𝑉 (2) 

Where 𝑉 is lung volume (L). A more correct model of Pleural 

pressure (𝑃𝑝), includes gastric pressure (𝑃𝑔), trans-

diaphragmatic pressure (Δ𝑃𝐷𝑖), and chest wall recoil (𝐸𝐶𝑊): 

𝑃𝑝 = (𝑃𝑔 +  Δ𝑃𝐷𝑖) + 𝐸𝐶𝑊𝑉 (3) 



  
 

 
Figure 1: Spring-damper modelling of lung physiology.  
 

However, Equation 3 can be simplified to: 

𝑃𝑎 =  𝐸𝑉 + 𝑃�̂� (4) 

Where 𝑃�̂� is inspiratory driving pressure resulting from gastric 

and trans-diaphragmatic pressures, and 𝐸 (cmH2O.s/L) 

includes elastic recoil from both the lung and chest wall. Thus, 

𝑃�̂� is relative to a baseline pressure at end expiration at the set 

PEEP. Thus, Equation 1, with an applied PEEP, becomes: 

𝑃𝑎𝑤 = 𝑃𝐸𝐸𝑃 +  𝐸𝑉 + 𝑅𝑄 +  𝑃�̂� (5) 

Equation 5 is a modified version of the single compartment 

model (Bates, 2009), where 𝑉 is tidal volume above end-

expiratory volume at the current PEEP.  

Inspiratory driving pressure, 𝑃�̂�, is modelled using 2nd order 

(d=2) b-spline functions defined over time. First (d=0) and 

higher orders (d>0) are recursively defined [43, 44]:  

Φi,0(𝑡) = 𝑓(𝑥) = {
1,          𝑇𝑖 < 𝑡 < 𝑇𝑖 + 1
0,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(6) Φi,d(𝑡) =
𝑡 − 𝑇𝑖

𝑇𝑖+𝑑 − 𝑇𝑖
Φi,d−1(𝑡)

+ 
𝑇𝑖+𝑑+1 − 𝑡

𝑇𝑖+𝑑+1 − 𝑇𝑖+1
Φi+1,d−1(𝑡)       𝑑 ≥ 1 

B-spline knots, 𝑇𝑖 , are equally spaced division points in time. 

Splines are non-zero on 𝑑 + 1 knot spans, and all splines sum 

1.0 at any point in time. A knot width of 0.05 seconds is used 

here, so the number and range of b-splines varies with 

inspiration length. For each inspiration, 𝑇𝑚𝑎𝑥 = 𝑘𝑤 ×

ceiling(𝑇𝑖𝑛𝑠𝑝/𝑘𝑤) defines the time span of all b-splines, and 

there are 𝑀 = 𝑇𝑚𝑎𝑥/𝑘𝑤  +  𝑑 total b-splines.  

Thus, 𝑃�̂� is the sum of M b-splines over inspiration (only):  

𝑃�̂� =  ∑ −𝑃𝑠,𝑖Φ𝑖,2(𝑡)

𝑀

𝑖=1

 (7) 

Where 𝑃𝑠,𝑖 are constant coefficients identified from measured 

data, and 𝑃�̂� is defined as a negative pressure generation. An 

example is shown in Figure 2. The overall modelled airway 

pressure is thus: 

𝑃𝑎𝑤 = 𝑃𝐸𝐸𝑃 + 𝐸𝑉(𝑡) + 𝑅(𝑡)𝑄(𝑡) − ∑ 𝑃𝑠,𝑖Φ𝑖,2(𝑡)

𝑀

𝑖=1

 (8) 

Linear least squares regression is performed using Matlab’s 

(Mathworks, Natick, MA, USA) lsqlin function to identify 

lung properties (𝐸, 𝑅) and breath-breath inspiratory driving 

pressure (�̂�𝑝) by identifying the 𝑃𝑠,𝑖 terms from 𝑛 breaths using 

a system of equations (Ax=b) with matrices defined: 

𝐴 = [
𝑉1(𝑡),     𝑄1(𝑡),

⋮
𝑉𝑛(𝑡),      𝑄𝑛(𝑡),

−Φ1,1,2(𝑡), … −Φ1,𝑀,2(𝑡),                [0](𝑛−1)×𝑀                    

⋮
              [0](𝑛−1)×𝑀,            −Φ𝑛,1,2(𝑡), … −Φ𝑛,𝑀,2(𝑡)

] 

 

(9) 
𝑏 = [

𝑃𝑎𝑤,1(𝑡)
⋮

𝑃𝑎𝑤,𝑛(𝑡)
] − 𝑃𝐸𝐸𝑃 

𝑥 = [𝐸, 𝑅, 𝑃𝑠,1,1 … 𝑃𝑠,1,𝑀, … , 𝑃𝑠,𝑛,1, … , 𝑃𝑠,𝑛,𝑀]
𝑇

  
 

Where 𝑃𝑎𝑤  (𝑡) and 𝑄(𝑡) are measured by the ventilator, and 

V(t) is integrated breath-by-breath from 𝑄(𝑡).  A single set of 

passive mechanical properties (E,R) is identified across 𝑛 =
20 breaths. Using lsqlin, 𝐸 and 𝑅 and the first 75% of 𝑀 b-

spline function coefficients, 𝑃𝑠,𝑖 , for each breath are 

constrained positive. The remaining 25% of b-spline functions 

are not constrained enabling any presence of end-inspiratory 

patient effort against the ventilator to be captured.  

 
Figure 2: Example of inspiratory driving pressure constructed 

from 5 non-zero 2nd order b-spline functions. 

 

The first 5 data points from expiration data were removed, as 

sudden pressure drop is deemed predominantly a function of 

ventilator and breathing circuit mechanics. Expiration data is 

also trimmed to data where expiratory 𝑄(𝑡) is greater than 

10% of peak expiratory flow. This ensures parameter 

identification is not heavily weighted towards expiration, 

which is approximately twice as long as inspiration.  

2.2 Patients 

This pilot analysis uses 10 patients ventilated on NAVA 

ventilation at the Cliniques Universitaires St-Luc (Brussels, 

Belgium) as part of a prospective crossover trial of PS and 

NAVA. Further details on the trial and inclusion/exclusion 

criteria can be found in (Piquilloud et al., 2011). Patients were 

ventilated on a Servo-I ventilator (Maquet, Solna, Sweden). 



Following ventilation on PS, the ventilator was switched to 

NAVA, with the NAVA level set so the PIP was similar to that 

PS ventilation. Data was recorded for 20 minutes while on 

NAVA at 100 Hz. Ventilation outcomes are given in Table 1. 

Inspiration and expiration were defined as positive and 

negative flow, respectively. Breaths with tidal volume less 

than 50mL, or where end expiratory volume was >50mL 

different from the expected 0mL, were discarded. End-

inspiration was defined in two ways: ventilator-delivered 

inspiration ended when flow became negative, and patient-

driven inspiration ended at peak Eadi. Typically, under 

NAVA, ventilator delivered end-inspiration occurs when Eadi 

has dropped to 70-80% of its peak value, and thus some 

patient-ventilator asynchrony may be present at this point.  

2.3 Analyses 

The model was identified over the first 20 breaths for each 

patient when on NAVA ventilation. Identification fit error is 

reported as median [IQR] per-patient RMS error. Correlation 

of PIP with peak Eadi assesses NAVA mode implimentation 

efficacy, while the correlation of tidal volume with PIP (V_t 

vs. PIP) reflects variability in delivered volume due to patient-

specific and breath-specific variability in breathing effort on 

top of ventilator-delivered pressure. Linear regression is used, 

and y-intercepts are not constrained to go through (0,0). Mean 

�̂�𝑝 over patient-inspiration is plotted against mean 𝑃𝑎 = 𝑃𝑎𝑤 −

𝑅𝑄, to assess whether outcomes fall along lines of constant 

trans-pulmonary pressure, as per the analysis of (Sinderby et 

al., 2007). 

Table 1: NAVA ventilation outcomes for n = 20 breaths. Results are median [inter-quartile range] where relevant. 

Pt 
RR 

(1/min) 
Vt (mL) 

PEEP 

(cmH2O) 
𝑻𝒊𝒏𝒔𝒑  (sec) 𝑻𝒆𝒙𝒑 (sec) PIP(cmH2O) Peak Eadi (μV) 

1 12.8 0.6 [0.6 - 0.7] 7.2 1.21 [1.13 - 1.28] 3.39 [3.31 - 3.70] 22.4 [21.5 - 23.9] 635 [601 - 716] 

2 31.9 0.4 [0.4 - 0.5] 5.4 0.74 [0.67 - 0.81] 1.18 [1.03 - 1.28] 21.2 [19.5 - 24.8] 417 [359 - 466] 

3 20.1 0.4 [0.4 - 0.4] 7.3 0.73 [0.70 - 0.76] 2.19 [1.96 - 2.37] 23.8 [21.8 - 25.6] 1407 [1237 - 1561] 

4 20.9 0.3 [0.3 - 0.3] 8.9 1.27 [1.16 - 1.38] 1.55 [1.45 - 1.63] 11.1 [10.5 - 11.7] 348 [304 - 392] 

5 48.1 0.3 [0.3 - 0.3] 11.8 0.46 [0.43 - 0.50] 0.77 [0.73 - 0.83] 30.2 [27.2 - 33.5] 1947 [1617 - 2268] 

6 29.5 0.5 [0.5 - 0.5] 4.4 0.72 [0.70 - 0.78] 1.28 [1.22 - 1.37] 16.0 [14.4 - 17.0] 2873 [2483 - 3117] 

7 20.2 0.3 [0.3 - 0.4] 7.6 0.75 [0.71 - 0.82] 1.72 [1.54 - 2.42] 20.9 [18.4 - 24.5] 946 [780 - 1193] 

8 24.2 0.3 [0.3 - 0.5] 7.5 0.92 [0.82 - 0.98] 1.64 [1.38 - 1.69] 13.6 [11.6 - 18.5] 442 [324 - 691] 

9 20.6 0.5 [0.4 - 0.5] 8.2 1.06 [1.00 - 1.12] 1.86 [1.78 - 2.00] 32.2 [29.2 - 35.3] 290 [269 - 312] 

10 30.7 0.4 [0.4 - 0.4] 8.6 0.71 [0.65 - 0.75] 1.21 [1.19 - 1.31] 21.6 [20.5 - 23.3] 2826 [2454 - 3182] 

Table 2: Model-based outcomes over n = 20 breaths. Results are median [inter-quartile range] where relevant. 

Pt 
E 

(cmH20/L) 

R 

(cmH20/L/min) 

RMS 

(cmH20) 

Airway driving 

pressure 
Peak 𝑷�̂�(𝐜𝐦𝐇𝟐𝟎) 

R2 

PIP vs. peak 

Eadi 

R2 

Vt vs. PIP 

R2 

𝑷�̂� vs. 

peak Eadi 

1 11.5 10.8 0.8 15.2 [14.3 - 16.8] -3.8 [-4.1 - -3.7] 0.97 0.84 0.85 

2 25.4 7.2T 0.6 15.8 [14.1 - 19.3] -5.3 [-5.7 - -5.1] 0.85 0.93 0.42 

3 18.4 10.7 0.5 16.5 [14.5 - 18.3] -4.5 [-4.7 - -4.3] 0.85 0.82 0.53 

4 2.1 0.0 0.2 2.2 [1.6 - 2.8] -3.2 [-4.6 - -2.7] 0.24 0.44 0.63 

5 29.8 9.9 0.9 18.4 [15.4 - 21.7] -7.9 [-8.8 - -7.3] 0.93 0.83 0.81 

6 9.3 5.9 1.6 11.7 [10.0 - 12.6] -1.9 [-2.4 - -1.4] 0.80 0.26 0.59 

7 14.7 13.7 0.8 13.3 [10.8 - 16.9] -2.2 [-2.9 - -1.9] 0.99 0.79 0.76 

8 16.7 5.9 0.7 6.1 [4.1 - 11.0] -3.8 [-4.2 - -3.4] 0.99 0.96 0.86 

9 25.4 19.1 0.7 24.0 [21.0 - 27.1] -7.3 [-8.2 - -6.0] 0.71 0.49 0.57 

10 14.7 7.6 0.9 13.0 [11.9 - 14.6] -4.0 [-4.4 - -3.7] 0.84 0.72 0.69 

 

 
Figure 3: Examples of model-fit for a single breath from each patient. Lung mechanics are fit simultaneously over n = 20 

breaths from each patient, but inspiratory drive (�̂�𝑝) is uniquely fit for each breath. 
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3. RESULTS  

Model-bsaed results are given in Table 2 and typical model fits 

are given in Figure 3. Median [IQR] per patient RMS error for 

n = 20 breaths was 0.75 [0.6 – 0.9] cmH2O. RMS error over 

inspiration was lower at 0.25 [0.2 – 0.5] cmH2O. Peak error 

typically occurred near peak expiratory flow, as shown in 

Figure 3, likely reflecting lung tissue relaxation time-constants 

currently not captured in the single compartment model (Bates, 

2007, Ganzert et al., 2009, Schranz et al., 2011).  

Correlation of PIP and peak Eadi is very high (R2 = 0.71-0.99), 

as expected under NAVA (Verbrugghe and Jorens, 2011). 

Correlation of PIP with tidal volume resulted in regression 

constants varying from 0.26-0.93 with a median R2 = 0.81.   

Inspiratory effort in Figure 3 reflects expected shapes for net 

pleural pressure changes over inspiration, with peak negative 

pressure ranging from ~ -2 to -8 cmH20 (Table 2). Inspiratory 

drive is non-linear with Eadi, but generally consistent breath-

breath within a patient. All patients in Figure 4 show positive 

inspiratory breathing effort at end of inspiration, suggesting 

mild patient-ventilator asynchrony during this period. 

Correlation of pleural pressure ( �̂�𝑝) with peak Eadi in Table 3 

was moderately high, showing a reduction in the magnitude of 

breath-to-breath negative inspiratory driving with increasing 

Eadi. This end-inspiration reduction in negative inspiratory 

driving pressure with peak Eadi is likely due to ventilator 

unloading, where an increasing proportion of the work of 

breathing is done by the ventilator at higher support levels. 

In Figure 5, average inspiratory effort vs. average alveolar 

pressure generally occurs along the dashed lines showing 

constant trans-pulmonary pressure. This result suggests patient 

WOB, and unloading of WOB onto the ventilator within a 

breath, is based on physiological feedback systems to maintain 

constant trans-pulmonary pressure, where the ventilator 

unloading onset is likely PEEP and NAVA level specific.  

4. DISCUSSION 

4.1 Model-based outcomes 

A b-spline model was used to identify breath-breath 

inspiratory driving pressure alongside lung mechanics in 

patients on NAVA. Model results show physiologically 

reasonable inspiratory driving pressures, reflecting 

spontaneous breathing effort, with overall good model fit to 

data. The driving pressures are compared to the nervous 

electrical signal input to the diaphragm, Eadi, and correlations 

and trends show a measure of validation in model-identified 

inspiratory drive behavior. 

The b-spline modelled inspiratory drive pressures match the 

shapes and variation magnitude within a breath for pleural or 

esophageal pressure in the literature (Imsand et al., 1994, 

 
Figure 4: Negative inspiratory pressure (�̂�𝑝) for each breath vs. normalised Eadi for 20 NAVA breaths in a single model 

identification (n = 20) for each patient. Bold lines show the median inspiratory drive across Eadi. 

 
Figure 5: Inspiratory drive vs. alveolar pressure. Dashed lines represent constant trans-pulmonary pressure. Format 

adapted from (Sinderby et al., 2007) 
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Lecomte et al., 2009, Mauri et al., 2016, Piquilloud et al., 2019, 

Sinderby et al., 2007), including peak negative esophageal 

pressure before PIP (Imsand et al., 1994, Mauri et al., 2016, 

Piquilloud et al., 2019, Sinderby et al., 2007) and incidence of 

positive pressure relative to baseline at breath end (Berger et 

al., 1996, Sinderby et al., 2007, Viale et al., 1998). The average 

trans-pulmonary pressure in Figure 6 is relatively constant 

across n =20 breaths, implying consistency in physiological 

feedback controlling breathing effort. Overall, the variability, 

shape and patterns of the inspiratory driving pressures 

identified are physiologically reasonable. Thus, the modelling 

approach may provide insight into patient breathing effort. 

The modelling approach presented here captures relative 

pleural pressure changes over inspiration, as opposed to 

absolute pleural pressure. Physiologically, a baseline pleural 

end-expiration pressure offset is expected due to lung volume, 

lung tissue/chest wall properties, and diaphragm/abdominal 

pressures. Thus, these results are likely PEEP and NAVA level 

specific, but capture the variation in inspiratory driving 

pressure magnitude required to estimate WOB. 

Consistency of trans-pulmonary pressure was analysed using 

the method of Sinderby et al, who showed consistency in trans-

pulmonary pressure across NAVA levels in healthy subjects, 

despite a wider range of inspiratory driving pressure changes 

than analyzed here (Sinderby et al., 2007). The constant 

transpulmonary pressure seen differed between quiet breathing 

and stronger inspiratory efforts (Sinderby et al., 2007). 

Inspiratory drive in Figure 4 was non-linear with Eadi, but 

consistent within a patient. Peak negative plural pressure did 

not occur with peak Eadi, suggesting non-linear conversion of 

electrical signals to diaphragm muscular action. Ventilator 

unloading, where the ventilator takes over the WOB as the 

breath progresses, is a known physiological phenomenon, 

which likely contributes to the non-linearity in the Eadi-

pressure transformation shown. The results in Figures 3-4 also 

imply activation of physiological feedback control systems to 

avoid over distension and tissue damage.  

In Table 2 and Figure 4, end inspiratory pleural pressure, 𝑷�̂�, 

became more positive (lower inspiratory effort) at higher Eadi, 

with R2 = 0.42 – 0.86. This result implies lower patient WOB 

as the NAVA level, and thus PIP, increases, matching trends 

in literature. This unloading of WOB on the ventilator, termed 

‘ventilator unloading,’ occurs with increasing NAVA (Beck et 

al., 2003, Imsand et al., 1994, Lecomte et al., 2009, Sinderby 

et al., 2007) or pressure support (Amato et al., 1992, Berger et 

al., 1996, Brochard et al., 1987) level, as pressure and/or 

volume increases. Ventilator unloading results in a greater 

proportion of the WOB of breathing being done by the 

ventilator. Total unloading, where the ventilator delivers all or 

most of the work of breathing, is patient specific in its pressure 

setting (Berger et al., 1996), and is the standard critical care 

ventilation of sedated patients (Morton et al., 2019b). 

In this analysis, lower inspiratory breathing efforts at higher 

Eadi, and the drop off in inspiratory driving pressure with Eadi 

in Figure 4, imply ventilator unloading occurs. Imsand et al 

show similar results within a breath, with a patient showing a 

drop in esophageal pressure early within a breath, followed by 

a pressure rise, which extends higher than baseline pressure at 

inspiration-onset near the end of the breath, at a trajectory 

parallel to that in passive breathing. They conclude active 

inspiration turned to passive inspiration within the same breath 

(Imsand et al., 1994). 

4.2 Limitations 

B-spline based models of spontaneous breathing effort are 

compared to measured Eadi and known behaviors as a first 

validation of the method. Further validation would require 

comparison to invasive esophageal pressures, which were not 

available in this study and are rarely measured.  

This modelling approach may be less effective when airway 

pressure fluctuations are flatter, such as when high breathing 

effort is present or under CPAP ventilation. Patient 4 had 

relatively low variability in airway pressure, and the model 

elastance and resistance were low (2.1 cmH20/mL and 0 

cmH20.s/mL), likely due to parameter trade-off between 

passive lung mechanics and negative driving pressure. 

However, overall model residuals are low, suggesting no 

missing dynamics. Flatter pressure profiles may necessitate 

further assumptions or regularization for identifiability, and 

the approach presented here is likely best in patients with 

stronger pressure profiles due higher ventilation requirements, 

which is also the cohort in which the model-based insights are 

potentially most useful.  

The model is fit over a series of breaths to ensure passive lung 

properties (E, R) do not trade off with inspiratory breathing 

efforts. Model fit to multiple breaths, and including ‘passive’ 

expiration data, improves parameter identification of passive 

lung mechanics. The modelling approach also currently 

constrains inspiratory drive to be mostly negative over 

inspiration,  regularizing the optimisation and identifiability 

problem (Docherty et al., 2011), and ensuring the optimal 

model fit is not a b-spline rendition of airway pressure with 

E=0 and R=0. Future work should explore constraint 

minimization and timing, as asynchrony commonly occurs 

around inspiration onset or early in a breath. 

5.  CONCLUSIONS 

Second-order b-spline basis functions were used to identify 

inspiratory driving pressure breath to breath.  Lung elastance 

ranging from 2.1 – 29.8 cmH20/L, and per-patient median peak 

driving pressure ranging from -1.9 to -7.9 cmH2O. Negative 

inspiratory driving pressure profiles matched esophageal 

pressures from literature, and showed trends with the electrical 

activity of the diaphragm. Average trans-pulmonary pressure 

remained consistent between breaths for each patient. Overall, 

the model-based method yielded physiologically reasonable 

inspiratory driving pressures, with trends with electrical 

activity. Results matched literature data showing neuro-

muscular decoupling as a function of pressure and/or volume. 
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