
Identifiability of pharmacological models for
online individualization

Ylva Wahlquist ∗ Amina Gojak ∗ Kristian Soltesz ∗

∗ Lund University, Dept. Automatic Control, Sweden
(e-mail: ylva.wahlquist@control.lth.se)

Abstract: There is a large variability between individuals in the response to anesthetic drugs,
that seriously limits the achievable performance of closed-loop controlled drug dosing. Full
individualization of patient models based on early clinical response data has been suggested
as a means to improve performance with maintained robustness (safety). We use estimation
theoretic analysis and realization theory to characterize practical identifiability of the standard
pharmacological model structure from anesthetic induction phase data and conclude that such
approaches are not practically feasible.
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1. INTRODUCTION

In general anesthesia, hypnotic depth—reciprocal to the
level of awareness—is controlled through the addition of
anesthetic drugs distributed across tissues and eventually
metabolized. This paper considers the prospect of auto-
matically controlling the hypnotic depth through real-time
electroencephalogram (EEG) measurements, from which
the depth can be estimated, and intravenous infusion of the
anesthetic drug propofol. This setting is well-studied in the
literature and has been the subject of a handful of clinical
studies. Without attempting a comprehensive survey, we
suggest the survey Ghita et al. (2000) as a starting point
for the interested reader.
As with many drugs, there is a large inter-patient vari-
ability in the response to propofol. It can partly be ex-
plained using mixed-effect population models as described
in Eleveld et al. (2018). Even so, the remaining variability
remains large, and importantly limits the performance of
a safe (robust) feedback controller, as we have illustrated
in for example Gonzales-Cava et al. (2020).
Consequently, several simulation studies have suggested to
individualize the controller, based on data from the induc-
tion phase of anesthesia, comprising of the transition from
the fully aware state to a desired hypnotic depth. In Soltesz
et al. (2013) we obtained promising results when consid-
ering an idealized simulation case. Here, we return to the
same idea and investigate how including a measurement
noise model changes the prospect of individualized therapy
based induction phase data. Particularly, we investigate
the practical identifiability of the standard pharmacolog-
ical model used to describe the effect of propofol on the
hypnotic depth from induction phase time series. This is
what would be required in a clinical setting since the point
of the individualization is to have the model available for
updating the drug dosing controller as early as possible
during the ongoing treatment.

2. DYNAMICAL MODEL

2.1. Pharmacological model
The relation between propofol infusion D [mass/time]
and measured clinical effect H is commonly modeled by
a pharmacokinetic (PK) model relating D to the blood
plasma concentration �? [mass/volume], a pharmacody-
namic (PD) model relating �? to the (normalized) clinical
effect H̄, and finally an observation model relating H̄ to the
measured clinical effect H.
The combined PK and PD (PKPD) model comprises
a linear and time invariant (LTI) mammillary three-
compartment model with �? as output, connected in series
with a lowpass filter, that can be thought of as an ef-
fect site compartment of infinitesimal volume. The output
of the series connection is the effect site concentration
�4 [mass/volume]. Here we will normalize �4 by ��50
[mass/volume], being the �4 value corresponding to the
midpoint between no and full clinical effect. We thus
introduce I = �4/��50. The combined LTI parts of the
PKPD models can be expressed on state space form as
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where [ = E1��50 is the product of the central compart-
ment volume E1 [volume] and ��50.



The transfer function of (1)–(2) from D to I is
�I, D(B) = � (B� − �)−1�

=  
(B + I1) (B + I2)

(B + ?1) (B + ?2) (B + ?3) (B + :40)
, (3)

with static gain  = :40/[, zeros −I1 = −:21,−I2 = −:31,
and where the poles −?1,−?2,−?3 solve the characteristic
equations

?1 + ?2 + ?3 = :10 + :12 + :13 + :21 + :31 (4a)
?1?2 + ?1?3 + ?2?3 = :10:21 + :10:31 + :12:31+

:13:21 + :21:31 (4b)
?1?2?3 = :10:21:31. (4c)

The nonlinear output part of the PD model is character-
ized by a sigmoidal function ℎ, relating I = �4/��50 to
the normalized clinical effect:

H̄ = ℎ(I, W) = 1 − 1
1 + IW , (5)

where H̄ = 0 and H̄ = 1 signify full awareness, and the
maximal hypnotic depth, respectively.
The eight parameters :10, :12, :13, :21, :31, :40, W, [
are assumed strictly positive, with W ≥ 1. The six rate
parameters :: [1/time] define the diffusion between the
compartments; [ has unit [mass]; W is unitless and defines
the shape of (5). A more in-depth explanation of the
combined model (1)–(5) is provided in Copot (2019).

2.2. Actuation model
The input D is actuated using a computer-controlled infu-
sion pump. For any reasonable syringe drug concentration
quantization error in the magnitude of D(C) is negligible, as
is quantization in C introduced by zero-order-hold (ZOH)
sampling 1 Furthermore, since the input is ZOH, ZOH
sampling of (1) at )B is approximation-free and used for
all simulations herein.

2.3. Observation model
Clinicians are used to the awareness being reported using
the bispectral index (BIS) or other awareness estimates
reported on the same scale 2 , where

H0 = �0 (1 − H̄), �0 = 100. (6)
We will here consider �0 = 100 in the equilibrium state
G = 0, but it could alternatively be considered a free
parameter that accounts for some patients generating a
monitor reading of e.g. 90 BIS (by setting �0 = 90) in
absence of drug, as observed and modeled in van Heusden
et al. (2013).
The clinical effect measure H is an estimate of the clinical
effect H0, derived from EEG measurements using a moni-
toring device, with a ZOH output, updated at )B = 1 s. The
observation model employed here is that the monitor in-

1 The resolution in C is typically ≈ 1 s and the resolution in
D for a standard 10 mg/ml propofol solution is ≈ 0.02 mg/min,
to be compared with the input magnitude and time scales of a
representative therapeutic profile in Fig. 4.
2 In the literature, the input matrix of (1) is often multiplied by
��50, while (5) and (6) are combined into the standard Hill function
form H0 = 100(�0 − �W

4 /(��
W

50 + �
W
4 )). The input-output behavior

becomes equivalent, but the normalization of the internal signals I
and ℎ (I) is lost.

troduces additive independent and identically distributed
(IID) Gaussian noise F ∼ N(0, f2),

H = H0 + F, (7)
where f2 = 92 BIS was identified for the NeuroSense EEG
monitor in Soltesz et al. (2012). Herein we use the more
optimistic f2 = 1 BIS 3 .

3. SIMULATED EXAMPLE

To generate a representative virtual patient, we have
used the population model of Eleveld et al. (2018) that,
based on openly available data sets, defines (nominal)
individual models on the form (1)–(5) as functions of
patient demographics. Particularly for our investigation,
we have used the reference patient model (35 year old male,
1.70 m, 70 kg) with parameter values \> in table 1.
The experiment is commenced in the stationary state G = 0
of (1), corresponding to the drug-free equilibrium. At time
C = 0 a bolus dose (an impulse) UX(0) is delivered and a
steady infusion V is commenced. The input is thus

D(C) =
{

0, C < 0,
UX(0) + V, C ≥ 0

(8)

The steady infusion was chosen to yield H0 = 50 BIS⇔ H̄ =

1/2⇔ I = 1 in stationarity. With system matrices defined
through (1)–(2) this corresponds to solving −��−1�V = 1,
resulting in V = :10[ = 5.5 mg/min.
In our simulations, the bolus was approximated by a high-
rate infusion 4 and the time during which the bolus dose
was delivered was chosen (through bisection search) to
limit the response overshoot to H̄(C) ≥ 0.6 as motivated
in Agrawal et al. (2010).
The input D and resulting effect H0 are shown in Fig. 4
(black) together with the noise-corrupted observation H

(gray).

4. LOCAL IDENTIFIABILITY

4.1. Practical identifiability at the true parameter
Unless pole-zero cancellations occurs (as further explained
in Sec. 5.2) the system (1)–(2) is structurally identifiable
from D, I. Since ℎ(I) of (5) is strictly monotonous in I it
also holds that the dynamics are structurally identifiable
from D, H0.
However, the input D of Fig. 4 comprises merely two step
changes. Furthermore, the experiment duration is less than
one sixth of the slowest pole time constant of the true
model (cf. table 1).
Increasing input excitation or prolonging the experiment
would both be associated with ethical concerns related to
patient safety. It is therefore natural to ask whether the
parameters of (1)–(5) are practically identifiable from D, H.
3 The aforementioned discrepancy between system time constants
and sampling period allows for lowpass filtering before subjecting H
to feedback control, making f2 = 92 BIS a somewhat pessimistic
assumption in that context.
4 The infusion rate corresponds to 1200 ml/h (being the max rate
of e.g. the Alaris TIVA infusion pump, (BD, Franklin Lakes, NJ))
with 10 mg/ml propofol (being a common emulsion concentration).



Table 1. Parameters (left) together with time constants 1/?: and 1/I: (right) of the system poles
and zeros of the model (1)–(5) corresponding to Fig. 2–3.

:10 :12 :13 :21 :31 :40 W [ 1/?1 1/?2 1/?3 1/:40 1/I1 1/I2

Unit 103/s 1 `6 min

\> 4.8 8.6 2.9 2.1 0.068 2.4 1.47 19342 0.95 18 406 6.8 7.9 246

Δ:10 475 7626 243 213 0.72 1.3 1.66 267 0.0020 0.92 35 13 0.078 23

Δ:12 0.94 0.086 0.17 2.9 0.54 18 1.48 1.4e5 5.5 14 41 0.93 5.7 31

Δ:13 12 5.6 0.029 0.79 0.79 1.3 1.48 10857 0.92 31 96 12 21 96

Δ:21 0.95 9.2e-10 0.19 212 0.79 18 1.48 1.4e5 0.079 12 31 0.92 0.08 21

Δ:31 1.0 0.18 0.63 0.47 6.8 16 1.45 1.3e5 2.2 14 46 1.0 2.5 35

Δ:40 1.5e-11 1.2e-8 0.53 2647 0.030 243 5.1 2.0e5 0.0063 30 2.1e13 0.069 0.0063 558

ΔW 17 1222 0.25 26 0.49 25 147 4733 0.014 32 47 0.66 0.65 34

Δ[ 687 60600 316 1124 0.77 1.4 1.51 193 3.0e-4 0.91 32 12 0.015 22
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Fig. 1. Top: Simulated true effect H0 = 6> (D, \>) (black)
and noise-corrupted observation H (gray). Bottom:
Propofol infusion profile D.

Let therefore H = [H1 . . . H=]> be a vector of the simulated
observations, with D = [D1 . . . D=]> being the corre-
sponding infusion rates. Since D remains constant between
consecutive samples, we can express the observation model
as

H = 6> (D, \>)︸     ︷︷     ︸
H>

+F, (9)

where 6> denotes the true model structure dynamics of
(1)–(5), \ is a vector comprising of the parameters of
table 1 (in that order), and \> signifies the true parameter
values. Given the known initial condition G(0) = 0, 6>
can be evaluated approximation-free at D, \> through zero-
order-hold (ZOH) sampling.
The data distribution is defined by the probability density
function (PDF) ?(H |\) and denotes the likelihood of ob-
serving H given \. Therefore, the data distribution is also
referred to as the likelihood of \, ! (\) = ?(H |\). Note that
both 6 and \ of (9) are assumed to be deterministic, and
so the likelihood of \ given the data, or observation, H is
defined by the PDF of F.
Since F is IID with F ∼ N(0, f2), we have that

! (\) = ?(H |\) =
=∏
:=1

1
f
√

2c
exp

(
−1

2

( (H: − 6>: (D, \))
f

)2)
,

(10)
where 6>

:
(D, \) denotes the :th element of the vector

6> (D, \). Maximizing the likelihood ! (\) of (10) is equiva-
lent to maximizing the log-likelihood

; (\) = log ! (\) = = log
(

1
f
√

2c

)
−+ (\), (11)

where the loss (or cost) function + is given by

+ (\) = 1
2f2

=∑
:=1
(H: − 6>: (D, \))

2. (12)

If \̂ is an unbiased estimator of \, meaning that E \̂ = \>,
then the Cramér Rao Lower Bound (CRLB) expresses a
lower bound on its variance:

Cov \̂ ≥ � (\)−1, (13)
where the Fisher Information Matrix (FIM) is given by

� (\) = � (−;, \) = � (+, \), (14)
and where the Hessian � of a function 5 with respect to
an argument G is a matrix with elements

�A ,2 ( 5 , G) =
m2 5

mGAmG2
(G). (15)

For the maximizer \ = \> of ; (\) the CRLB is tight. See
e.g. Kay (1993) for derivation of the CRLB and discussion
of necessary, and here fulfilled, regularity conditions for it
to hold.
We can note that + of (12) conveys information about
how well the model output Ĥ(D, \) = 6> (D, \) resembles the
observation H. Particularly, the root mean square (RMS)
error is f

√
2+ (\)/=.

The Hessian (14) also appears in the Taylor series expan-
sion
+ (\> + X) −+ (\>) = ∇+ (\>)︸   ︷︷   ︸

0

X + 1
2X
>� (+, \>)X + A (X), (16)

where the true parameter \> has been perturbed by X,
and where the residual A (X) is a linear combination of



monomials in the components of X, each with degree of
at least 3. If ‖X‖2 is small, the contribution of A (X) to + is
small.
The function 6> (·, \) has continuous second derivatives
with respect to components of \, resulting in � be-
ing symmetric with singular value decomposition (SVD)
� (+) (\>) = 1

f2*Σ*
>. The CRLB states that the principal

parameter space direction variance at the true parameter
is lower bounded by the diagonal elements of f2Σ−1, since
� (\>) = f2 (*Σ*>)−1 = f2*Σ−1*>. (If any diagonal ele-
ment of Σ is zero, the estimate variance in the principal
parameter space direction defined by the corresponding
column of * will thus be infinite.)
For convenience of interpreting the sensitivities, we have
normalized the parameter vector by the true parameter
values, so that the true normalized parameter vector
corresponding to (17)–(18) is \>′ = 18×1, where ′ signifies
the normalization and 18×1 is a row vector of eight ones.
Upon this normalization, the SVD matrices at the true
parameter values become

* =



−0.30 −0.73 −0.28 0.24 −0.03 −0.35 −0.29 −0.16

−0.03 −0.15 −0.13 −0.45 0.12 −0.01 −0.28 0.82

−0.16 −0.41 −0.16 0.10 0.02 0.58 0.63 0.17

0.04 0.11 0.22 0.81 0.31 −0.02 −0.10 0.42

0.02 0.01 0.03 −0.06 0.04 −0.73 0.66 0.18

0.00 0.04 0.06 0.21 −0.94 −0.02 −0.02 0.26

0.49 0.18 −0.84 0.17 −0.0 −0.02 0.01 0.02

−0.80 0.48 −0.35 0.05 0.02 −0.01 0.01 0.03


(17)

diag(Σ)> =
[
273352 82915 79814 55607 19398 6297 4508 845

]
,

(18)

where the parameter order is that of table 1. The condition
number of the FIM, being the ratio between the largest and
smallest element in f2Σ−1 is large, cond � (\>′) > 300f2,
indicating high noise sensitivity and the last column of
* in (17) reveals that the least certain parameter space
direction at \>′ is roughly 0.8: ′12 + 0.4: ′21 + 0.3: ′

40.

5. GLOBAL IDENTIFIABILITY

5.1. Flexibility of parameterization
The analysis of Sec. 4.1 characterizes local identifiability
of linear combinations of the parameters at \>.
To analyze global identifiability of the individual param-
eters, we fixed them—one at a time—to a value that was
off by a factor of 100 to investigate how well the remaining
parameters could compensate for this. The quadratic loss
+ of (12) was minimized using Newton’s method with
line search. Automatic differentiation was used to obtain
approximation-free gradient and Hessian information, see
Revels et al. (2016). After careful initialization, the model
fits of Fig. 2 were obtained. The legend notation Δ: indi-
cates which parameter has set to be off by a factor 100,
and Δ:13 corresponds to a reduced-order model, detailed
in Sec. 5.2. Corresponding Bode diagrams are shown in
Fig. 3.
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Fig. 2. Simulated true effect H0 (black) where remaining
curves show model outputs 6> (D, \) where all param-
eters (elements of \) have been optimized one at a
time (see legend). :10, :21, :31, :40 and W was fixed
to a factor 100 times its true value and :12, :13 and
[ to 1/100 of its true value.
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Fig. 3. Bode plots of the models in Fig. 2. See Fig. 2 for
further specification of the individual models.

Considering a model 6(D, \) where 6 ≠ 6> or \ ≠ \> leads
to a bias error H0 (\):

H = 6(D, \) + H0 (\) + F. (19)
This results in a typically non-Gaussian residual n =

H0 (\) + F, and consequently minimizing the loss + , cor-
responding to minimizing n>n , does in general no longer
yield a \ that maximizes the log-likelihood ; of the data.
However, as seen in Fig. 2, the bias for all cases but Δ:40
is negligible. Consequently, the relation (11) between +

and ; holds with good approximation for these cases. For
Δ:40, and to a lesser extent ΔW, the fitting errors in Fig. 2
can be visually detected. This corresponds to some degree
of identifiability, but reducing the error factor to 8 for
:40 and 2 for W enables fitting models that are visually
indistinguishable from the true dynamics in Fig. 2.
Inspired by the reduced-order models proposed in da Silva
et al. (2012) we also minimized the quadratic loss + of
(12) for a reduced-order model with three asymptotically
stable real poles and one asymptotically stable zero. It
is the result of this minimization plotted as Δ:13 in
Fig. 2, and it naturally raises the question of which
reduced-order models correspond to (3) through pole-zero
cancellation, and what flexibility of the parameterization
such cancellation provides.



5.2. Pole-zero cancellations
Here we characterize conditions imposed on the poles
and zeros of reduced-order transfer functions, for them to
constitute a realization of (1)–(2) with \ � 0 and what
flexibility, i.e. loss of identifiability, the cancelled dynamics
provide.
It follows directly from the compartmental structure of
(1)–(2) that \ � 0 implies that �I,D (B) has strictly positive
static gain, and that all its poles and zeros are real negative
numbers (asymptotically stable). Before commencing the
analysis we also note that there is a symmetry in that
indices 2 and 3 of (1) can be interchanged.
No cancelled dynamics Assuming that no two of :40, :21,
:31 are equal, the static gain, zeros, and effect site pole are
uniquely determined by [, :21, :31, and :40, respectively.
The characteristic equation (4c) then uniquely determines
:10 = ?1?2?3/(:31:21), and we can rewrite (4a)–(4b) as

?1 + ?2 + ?3 − :10 − :21 − :31

?1?2 + ?1?3 + ?2?3 − :10:21 − :10:31 − :21:31

︸                                                                      ︷︷                                                                      ︸
1

=


1 1

:31 :21

︸       ︷︷       ︸
"


:12

:13

︸︷︷︸
:

.

(20)
It is necessary that 1 = [11 12]> � 0 for all parameters
to be positive. Since :21 ≠ :31, " has full rank and we
are looking for a solution : = [:12 :13]> = "−11 � 0
of (20). We see from 11 = :12 + :13 that :12 < 11 (we
only treat one of the two symmetric cases of :12 and :13
explicitly) is a necessary condition for the existence of such
solution. With 0 < :12 < 11 we fulfill 11 = :12 + :13
with :13 = 11 − :12 > 0. We now rewrite the second
characteristic equation as 12 = :31:12 + :21 (11 − :12)
and solve for :12 = (12 − :2111)/(:31 − :21). Due to
symmetry we can exchange :21 with :31 to ensure :12 > 0.
Combining the expression for :12 in known entities with
the requirement :12 < 11 finally yields the necessary and
sufficient condition

11 > 0 ∧ 12 > 0 ∧ |12 − :2111 | < 11 |:31 − :21 |. (21)
It is straightforward to expand the inequalities conditions
into ?1, ?2, ?3, :10, :12, :13, :21, :23, but this has been
omitted here in the interest of space and readability.

5.2.1. Single PK pole cancellation Setting :21 = :31
results in the dynamics G2 and G3 of (1) becoming identical,
and

�I,D (B) =
1
[

(B + :21)
(B + ?1) (B + ?2)

:40
(B + :40)

(22)

with characteristic equations ?1 + ?2 = :10 + :12 + :13 + :21
and ?1?2 = :10:21. The static gain, remaining zero and
effect site pole are specified as in the cancellation-free case.
This leaves the remaining parameters to determine the
two remaining poles. As before, (4c) determines :10 =

?1?2/:21. Inserting this expression, the first characteristic
equation can be written 1 = ?1+?2−:21−?1?2/:21 = :12+
:13, and as before 1 > 0 constitutes a necessary condition.
With it fulfilled and with :12 < 1, 0 < :13 = 1 − :12
solves the first characteristic equation. The necessary and
sufficient condition is thus 0 < :12 < 1 > 0. Relatedly, we
see directly from (1) that cancelling two of the PK poles
would require :12 = :13 = 0, which would void the strictly
positive parameter requirement.
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Fig. 4. Continuation of the simulations in Fig. 2 beyond
the first hour used to fit the models. See Fig. 2 for
further specification of the individual models.

5.2.2. Double cancellation Setting :21 = :31 = :40 re-
sults in two pole-zero cancellations in (3) and the transfer
function

�I,D (B) =
:21
[

1
(B + ?1) (B + ?2)

(23)

with characteristic equations identical to the PK compart-
ment cancellation case. Solving the second characteristic
equation for :10 and inserting into the first results in the
necessary and sufficient realization condition 1 = ?1 +
?2 − ?1?2/:21 − :21 > 0 ∧ 1 > :12 with :13 = 1 −
:12 (or symmetric case by exchanging :12 for :21). The
first inequality is quadratic in :21, and the corresponding
quadratic equation has solutions :21 = ?1 and :21 = ?2.
Since all parameters are positive, the inequality can thus
be written min(?1, ?2) < :21 < max(?1, ?2). Solving
m1/m:21 = 0 we can also see that 1(:21) is maximized
at :21 = (?1 + ?2)/2.
Again, it is straightforward to insert numerical values
from the example to see within what bounds individual
parameters could be varied without affecting �I,D.

6. DISCUSSION

It should not come as a surprise that the eight individual
parameters of \ cannot be reliably identified from an
experiment with poor input excitation (essentially the
sum of an impulse and a step) that is furthermore short
compared to the slowest pole dynamic. Particularly, loss
of identifiability of the static gain is expected from an
experiment duration less than one eighth of the slowest
pole time constant of the true system (see Fig. 4 and
table 1). A clear illustration of this is provided in Fig. 4,
that shows the continuations the experiments in Fig. 2
under constant D.
Yet, several factors worsen the prospect of identifiability
from real data. Firstly, we have here assumed that the
data was generated by dynamics that are in the set of the
considered model class and that no disturbances act on the
system in addition to a Gaussian IID measurement noise
of known variance. Looking at EEG responses from ac-
tual patients, available through for example Eleveld et al.
(2018) one quickly realizes that each of these assumptions
is far from realistic. Co-administration of drugs also influ-
ences the anesthetic depth. Notably, opioids (administered
for their analgesic effect) typically decrease H, see Vuyk
(1997). The extent by which nociceptive stimuli affect H
can to some extent be controlled using analgesic drugs,
but not to an extent that their influence can be neglected.



Secondly, the observation model (7) is a simplification
mainly in that EEG monitors introduce considerable time
lag caused by internal signal processing. For the Neu-
roSense, the lag dynamics are LTI and constituted by
ZOH sampling of a second order filter with real pole time
constants of 8 s, at )B = 1 s, as further explained in Bibian
et al. (2011). For the much more commonly applied BIS
monitor (Medtronic, Dublin, Ireland), the corresponding
filtering dynamics are proprietary, and experiments re-
ported in e.g. Lee et al. (2019); Bibian et al. (2011) have
demonstrated that they exhibit nonlinear rather than LTI
behavior.
The two principal alternatives available to improve the
situation is to use simplified models, as proposed in for
example da Silva et al. (2012), Wahlquist et al. (2020), van
Heusden et al. (2013), and account for the associated bias
by designing controllers with a higher degree of robustness
to model uncertainty to account for this bias.
The described situation arises in many domains when com-
plex dynamics are to be identified from non-informative
data. In our case, identification of the full PKPD struc-
ture results in low bias (at least for simulated data) but
high variance (uncertainty) of the parameter estimates.
Reduced-orders models can reduce this variance, but at
the cost of increased bias.
This brings up the central question of what the model will
be used for. Historically the closed-loop anesthesia control
research community has relied on the PKPD structure,
perhaps mainly because models reported in the literature
have that structure. However, if the purpose of the model
is feedback controller design, there is no apparent benefit
in sticking to the mechanically motivated model structure
of (1)–(2). Therefore, it can be viewed as good news that
comprehensive original experimental datasets for propofol
PK and PD modeling have lately been compiled, perhaps
most notably in the supplement of Eleveld et al. (2018).
Setting out in such data it is for the first time possible to
combine the activities of modelling and controller design,
thus eliminating the reason to guess (or neglect) what
uncertainties to associate with published PKPD models
when considering them as a basis for controller design.

7. CONCLUSION

The classic PKPD model structure for propofol is not
practically identifiable from induction phase data available
in the clinic. Reliable individualization of drug delivery,
beyond what is possible through compensating for de-
mographic trends that can be determined a priori, will
therefore need to be achieved by other means. The re-
cent availability of comprehensive original propofol PKPD
modeling datasets opens up for the identification of other
model structures. If the objective is closed-loop control,
it is more important for the dynamical patient model to
be accurate around the intended closed-loop bandwidth
than for it to maintain a physiologically motivated struc-
ture. Particularly, a closer investigation on how control
performance is affected by employing less flexible models
(with fewer parameters), is motivated in the light of the
investigated identifiability issues.
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