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Abstract: Convolutional Neural Networks is one of the most commonly used methods for
automatic prostate segmentation. However, few studies focus on the segmentation of the two
main zones of the prostate: the central gland and the peripheral zone. This work proposes and
evaluates two models for 2D semantic segmentation of these two zones of the prostate. The
first model (Model-A) uses an encoder-decoder architecture based on the global U-net and the
local U-net architectures. The global U-net segments the whole prostate, whereas the local U-net
segments the central gland. The peripheral zone is obtained by subtracting the central gland from
the whole prostate. On the other hand, the second model (Model-B) uses an encoder-classifier
architecture based on the VGG16 network. Model-B performs segmentation by classifying each
pixel of a Magnetic Resonance Image (MRI) into three categories: background, central gland, and
peripheral zone. Both models are tested using MRIs from the dataset NCI-ISBI 2013 Challenge.
The experimental results show a superior segmentation performance for Model-A, encoder-
decoder architecture, (DSC = 96.79% ± 0.15% and IoU = 93.79% ± 0.29%) compared to
Model-B, encoder-classifier architecture, (DSC = 92.50%± 1.19% and IoU = 86.13%± 2.02%).

Keywords: Convolutional Neural Networks, Prostate Segmentation, Central Gland, Peripheral
Zone, MRIs, Encoder-Decoder, U-net, Encoder-Classifier, VGG16, NCI-ISBI 2013.

1. INTRODUCTION

Prostate cancer is one of the public health problems that
affect men. The Global Cancer Observatory GLOBOCAN
(2020) showed that prostate cancer was the second fre-
quently diagnosed cancer and the sixth leading cause of
death among men. Diagnosis of prostate cancer performs
by visual analysis of tissue samples obtained through
biopsy from the patient Heidenreich et al. (2008); Lo-
mas and Ahmed (2020). An alternative is to use multi-
parametric MRIs Villers et al. (2012), which helps to check
for the presence or absence of prostate cancer without the
need for biopsy sampling. However, this approach requires
the urologist to outline or segment the prostate border and
target Lomas and Ahmed (2020) which is challenging due
to: a) noise present in medical images; b) voxel intensi-
ties variation; c) finite image resolution; and d) anatomy
variation of prostate among different individuals. There-
fore, automatic segmentation would address the problems
of manual segmentation and can improve the speed and
accuracy of segmentation.

In automatic segmentation, there are some traditional
methods in literature such as Atlas-based models, de-
formable models, threshold-based models, and region-
based models Yan et al. (2019). However, recent works
for prostate segmentation using Artificial Neural Networks
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have shown remarkable results. Therefore, we carried out
a Systematic Literature Review (SLR): “Prostate Seg-
mentation in Magnetic Resonance Image using Artificial
Neural Networks”. This SLR was analyzed 65 studies of
interest between 2014 and 2020. The results of the SLR
shown that 81.53% (53 studies) used convolutional neural
networks (CNNs), whereas 15.38% (10 studies) combined
CNNs with other segmentation techniques, and 3.08% (2
studies) used feed-forward neural networks. In addition,
the results of the SLR shown most studies focus on seg-
menting the whole prostate leaving aside the main zones
of the prostate. There were only 12 studies that segmented
the prostate gland in its two main zones: the central gland
and the peripheral zone. However, 7 studies P1 proposed
by Gelder and Huisman (2018), P2 proposed by Rundo
et al. (2020), P3 proposed by Jensen et al. (2019), P4
proposed by Zabihollahy et al. (2019), P5 proposed by Cao
et al. (2020), P6 proposed by Khan et al. (2020), and
P7 proposed by Umapathy et al. (2020) used private
datasets. Whereas the remaining 5 studies P8 proposed
by Benalcázar et al. (2015), P9 proposed by khan et al.
(2019), P10 proposed by Liu et al. (2019), P11 proposed
by Meyer et al. (2019), and P12 proposed by Aldoj et al.
(2020) used public datasets. Therefore, there is still a
gap for improvement in the prostate segmentation in its
main parts. Also, the results of the SLR shown that the
type of segmentation commonly used was 2-dimensional
2D. Taking into consideration the results of the SLR, we



propose this research work, and their main contributions
are:

(1) Two models for 2D semantic segmentation of the
prostate gland in its two main zones in MRIs using
CNNs developed and compared. One of the models,
Model-A was based on an encoder-decoder architec-
ture. The other model, Model-B was based on an
encoder-classifier architecture.

(2) The images used in this research are the MRIs with-
out endorectal coil, which is more challenging for 2D
semantic segmentation because it does not provide
a reference point. This MRIs belong to the dataset
NCI-ISBI 2013, which has segmentation labels for the
main areas of the prostate.

(3) Comparison of the performance achieved by the pro-
posed models with respect to models of SLR that use
the NCI-ISBI 2013 dataset.

This article is organized as follows: The materials and
method are presented in Section 2. Next, the result and
discussion presents in Section 3. Finally, in Section 4
presents the conclusions of this work.

2. MATERIALS AND METHOD

This section describes the materials and methodology used
to develop this work.

2.1 Prostate MRI Dataset

The National Cancer Institute (NCI) in collaboration with
the International Society for Biomedical Imaging (ISBI)
created the NCI-ISBI2013 public dataset, which was used
to segmentation the prostate in its two main zones. The
used 3T MRIs collection contained 30 transverse volumes
accompanied by their respective manual segmentation or
gold standard volumes. The number of slices per volume
varied between 15 and 24. Also, each slice contained T2-
weighted images of 320× 320 pixels.

2.2 Evaluation Metrics

The metrics for evaluation the models were Dice Similarity
Coefficient (DSC) and Intersection over Union (IoU),
which were shown in equations (1), and (2).

DSC =
2|X ∩ Y |
|X ∪ Y |

=
2TP

2TP + FP + FN
(1)

IoU =
|X ∩ Y |
|X ∪ Y |

=
TP

TP + FP + FN
(2)

Where X and Y denoted the region of the predicted seg-
mentation and reference segmentation, respectively in (1),
and (2). The modulus sign ‘| |’ defines the cardinal of the
corresponding sets.

Also, other metrics were used, such as precision, recall and
accuracy, that were obtained from the confusion matrix.

2.3 Model-A Architecture

Model-A was based on the U-net network Ronneberger
et al. (2015), which had an encoder-decoder architecture.

This model implemented two U-net networks in cascade:
global U-Net and local U-Net. The Model-A architecture
was showed in Fig. 1, where first the global U-net was used
to segment the whole prostate gland. Then, the local U-
net was used to segment the central gland. Subsequently,
the peripheral zone is obtained by subtracting the central
gland from the whole prostate. Also, the global U-Net and
local U-Net architectures contained the pre-processing,
data augmentation, feature extraction and segmentation,
and post-processing blocks.

Fig. 1. Model-A based on the Encoder-Decoder Architec-
ture

Pre-processing: regions of interest were extracted as
input of the local and global U-net from 2D MRIs.

• For the global U-net input was extracted regions of
interest with three different sizes (151 × 151 pixels,
M × N pixels where M ≤ 151 and N ≤ 151 and
mask’s size) of which the region of interest with size
M ×N obtained superior results.

• For the U-net local input was extracted the region
of interest with size M × N . Additionally, we were
considered the dependence or independence of results
of global and local U-net, where the dependence of
results of the global and local U-net obtained superior
results.

Data Augmentation The dataset contained 578 2D MRIs
(30 MRIs volumes). However, only 421 2D MRI contained
the main zones of the prostate. To increase the number
of samples of MRIs were used data augmentation tech-
niques in global and local U-net. Among augmentation
techniques were used: flipping, random rotation between
[−45◦,+45◦], zoom, and zoom with random rotation. Fi-
nally, the dataset increased in 2105 2D MRIs.

Feature Extraction and Segmentation: In the global and
local U-net architecture, the encoder block extracted fea-
tures using the repeated application of 3× 3 convolutions,
followed by dropout layer, a 3 × 3 convolutions, and a
2 × 2 max-pooling layer for downsampling. Each down-
sampling doubled the number of feature channels. On the
other hand, the decoder block segmented the regions of
interest, which consisted in the repeated application of a
2 × 2 transposed convolution that halves the number of
feature channels then the concatenation of the correspond-
ing cropped feature map from the encoder block, followed
by one 3 × 3 convolutions, a dropout layer, and a 3 × 3
convolutions. The final layer used a 1× 1 convolution that
assigned the classes. Also, the convolution block used the
ELU activation function in U-net. Fig. 2 shown the local U-
net architecture. The global U-net architecture employed
the same architecture that local U-net with different inputs
and outputs. Finally, the parameters trained in global or
local U-net consisted of a total of 1940817 parameters.



Fig. 2. Local U-Net architecture

Post-processing: helped to improve the prediction of seg-
mentation of both the global and local U-net. The predic-
tion result was binarized using a 0.5 threshold. Then, an
opening morphological operation was applied using a disk
structuring element with radius 5. Next, small areas were
removed leaving the result the segmentation mask.

2.4 Model-B Architecture

The Model-B was based on VGG16 pre-training model Si-
monyan and Zisserman (2015), which has an encoder-
classifier architecture used in classification tasks. Model-
B used a sliding window to predict the class label of
each pixel by providing a patch (local region). The blocks
defined to create Model-B were: pre-processing, data aug-
mentation, feature extraction and segmentation, and post-
processing blocks.

Pre-processing: In this step were extracted regions of
interest with size M×N from 421 2D MRIs that contained
the two main zones of prostate described above. Also,
patches of 15 × 15 pixels were extracted using a sliding
window from the regions of interest. These patches were
labeled depending on the central pixel as the background,
the central gland, and the peripheral zone. Finally, these
patches were employed as the input of the Model-B.

Data Augmentation: In the patches extraction, we noted
the imbalanced data. Therefore the patches for each of
the classes was manipulated as follows: a) the patches for
the background was reduced a 2/3 parts, b) the patches
for the central gland was maintained, and c) the patches
for the peripheral zone was increased 3 times using data
augmentation techniques such as flipping, and random
rotation between [−45◦,+45◦]. The obtained patches were
161607 patches for the background, 152042 patches for the
central gland, and 155040 patches for the peripheral zone.

Feature Extraction and Segmentation: Model-B used the
VGG16 pre-trained model. Also, the training for Model-
B consisted of a fine-tuning keeping the weights of the
15 first layers and adjusting weights of the last layers for
the classification of 3 classes: central gland, peripheral
zone, and background (see Fig. 3). Therefore, Model-B
had a total of 14846787 parameters, where the 7211523
parameters were trained and the7635264 parameters were
re-used

Fig. 3. Model-B based on the Encoder-Classifier Architec-
ture

Post-processing: In the segmentation result of the MRI
was removed the small areas keeping the largest areas of
the prediction of the two main zones.

2.5 Implementation Details

Training and testing of the models were implemented on
Tensorflow v13.1 as the machine learning framework. Also,
Training and testing were run on an Nvidia Tesla K80,
with 12 GB of memory and Cuda edition of 10.1.

• The training parameters for Model-A was detailed
below: a) loss function: binary cross-entropy, b) opti-
mizer: ADAM, c) batch size: 16, d) total number of
epochs: 200, e) early stopping patience: 100, and f)
the class weight was calculated to balance the classes
of the region of interest.

• The training parameters for Model-B was detailed
below: a) loss function: categorical cross-entropy, b)
optimizer: SGD, c) learning rate: 0.001 with decay of
0,000001 and momentum of 0.9, d) batch size: 64, e)
number of epochs: 10, and f) early stopping patience:
20.

3. RESULT AND DISCUSSION

This section presents the results of Model-A and Model-
B and a comparison with others proposed in SLR. The
estimation of the Model-A and Model-B results in DSC
and IoU metric consisted of the 10-time repetition of the
cross-validation process with K-fold equal to 5. In other
words, the cross-validation process consisted of the 5-
time repetition dividing the 30 MRIs volume into five
random groups, of which four groups (24 MRIs volume)
were used for training and validation, and one group (6
MRIs volume) was used for testing. Also, to establish a
comparison of Model-A and Model-B with other proposed
are got the confusion matrix using the 16-30 MRI volume,
where the number of processed voxels was 29237248.

3.1 Results of Model-A

This section presented the results achieved by Model-A.
The results of training, validate and testing of Model-A
were presented in table 1. Notice in this table, the testing
results reached 96.79% and 93.79% in the DSC and IoU
metrics, respectively. In addition, the results showed that
there was not over-fitting.

Further, in Table 2 was shown the confusion matrix and
the precision, recall and accuracy metrics. The confusion
matrix shown a true positive rate of 95.81% for the



Table 1. Result of Model A

DSC [%] IoU [%]

training 96.59 ± 0.23 93.42 ± 0.43

valid 94.09 ± 0.07 88.86 ± 0.13

test 96.79 ± 0.15 93.79 ± 0.29

background, 0.55% for the peripheral zone, and 3.20% for
the central gland. Notice that peripheral zone and central
gland pixels occupied ≤ 4.19% compared to background
pixels. Furthermore, the precision and recall results for the
peripheral zone were 77.44% and 70.65%. These results
were due peripheral zone occupied 0.78% of the total
number of pixels.

Table 2. Confusion matrix of Model-A

3.2 Results of Model-B

The training, validate and testing results of Model-B using
DSC and IoU metric were presented in Table 3. The
Model-B obtained a testing results of 92.50% and 86.13%
in the DSC and IoU metrics, respectively. Notice that the
testing result of Model-B was lower than Model-A because
the result of Model-B did not take adjacent pixels into
account.

Table 3. Result of Model-B

DSC [%] IoU [%]

training 94.27 ± 1.33 89.27 ± 2.36

valid 76.48 ± 0.36 62.25 ± 0.47

test 92.50 ± 1.19 86.13 ± 2.02

Table 4 presented the confusion matrix, the precision,
recall and accuracy metrics. Also, the confusion matrix
showed a true positive rate of 95.93% for the background,
0.33% for the peripheral zone, and 2.27% for the central
gland. The precision and recall of the central gland and
the peripheral zone were less than the background class,
due to the peripheral zone and central gland patches
occupied ≤ 4.07% compared to background patches.

Table 4. Confusion matrix of Model-B

3.3 Comparison of Proposed Models

The comparison of Model-A and Model-B consisted in
compare the testing results (see Table 1 and table 3),
which were shown in Fig 4. The results of Model-A and
Model-B did not show overlap. Also, the result of Model-A
overcame Model-B in DSC metric with 4.29%, and in IoU
metric with 7.66%. The results of Model-A were due to the
encoder-decoder architecture of the U-net network, which
took as input the region of interest to predict results based
on the information in context. The input and output of the
U-net network used the same sizes. Also, Model-A used the
region of interest of M×N size, which reduced 52% of the
original MRI size. In addition, Model-A implemented the
two U-net networks in a cascade.

Fig. 4. Comparison of Model-A and Model-B

3.4 Comparison of Proposed Models with State of the Art

Comparison of models proposed with models that used the
same dataset obtained the Model-P8. The results compar-
ison of these model consisted in compare the precision,
recall and accuracy results of proposed models (see tables
2 and 4). The results of this comparison were shown in the
table 5. Notice that the precision, recall, and accuracy of
Model-A achieved high results compared to Model-B and
Model-P8. Moreover, Model-B outperformed Model-P8 in
the precision and recall metrics of the whole prostate and
central gland. However, Model-P8 outperformed Model-B
in the precision and recall metrics of the peripheral zone.

Table 5. Comparison of Models A and B with
the State of the Art

Metric Model-
A

Model-
B

Model-
P8

Precision (Predicted labels — Actual labels)
Prostate — Prostate 98.8915 88.6480 77.7071
Central gland — Central gland 94.9256 87.0174 72.0175
Peripheral zone — Peripheral
zone

77.4377 62.0015 76.3224

Recall (Actual labels — Predicted labels)
Prostate — Prostate 97.2260 75.2310 62.0712
Central gland — Central gland 94.8608 75.0512 56.7926
Peripheral zone — Peripheral
zone

70.6727 48.8045 63.0397

Accuracy 99.56 98.54 96.84

The prostate segmentation in their two main zones was
evaluated qualitatively by visual comparison with manual
ground truth and results of Model-A, Model-B, and Model-
P8 (see Fig. 5). Although peripheral zone and central
gland occupied a small area of pixels in the MRIs, the
Model-A got a similar result to ground truth. Additionally,
the Model-B occupied second place in the segmentation



of the two zones. Finally, the Model-P8 contained fewer
true positives. Note that Model-B and Model-P8 detected
more spurious objects of the central gland or peripheral
zone because these models segment the two zones of the
prostate by classifying each pixel of its 2D slices as either
central gland, peripheral zone, or background.

4. CONCLUSION

In this work, we have presented two models for the auto-
matic segmentation of the two main zones of the prostate:
the central gland and the peripheral zone. The first model
(Model-A) uses an encoder-decoder architecture, which
takes as input the 2D MRIs, and returns the segmentation
of the two zones of the prostate. On the other hand,
the second model (Model-B) uses an encoder-classifier
architecture. The Model-B takes as input a patch of a 2D
MRI and returns the classification of that patch into three
classes: background, central gland, or peripheral zone. The
classification of all the patches of an MRI gives as a result
of the segmentation of the two main zones of the prostate.

Model-A is based on the U-net network architecture. This
model is composed of a cascade of two networks: global U-
net and local U-net. The global U-net is used to segment
the whole prostate. This network takes as input 2D MRIs
with a region of interest of M ×N pixels, where M ≤ 151
and N ≤ 151. This region of interest of M × N pixels
contains an area of 48% of the original MRI. The local
U-net is used to segment the central gland. The input of
this local U-net is the region of interest of M × N pixels
together with its segmentation predicted by the global U-
net. The peripheral zone is obtained by subtracting the
central gland from the whole prostate. The global and local
U-nets share the same architecture.

Model-B is based on a pre-trained VGG16 network. This
model takes as input patches of 15 × 15 pixels extracted
from the region of interest of M ×N pixels obtained from
2D MRIs using the process described above for Model-A.
Each patch of 15 × 15 pixels was labeled with the value
of its central pixel in the ground truth image. The three
classes that were used to define the labels for these patches
are central gland, peripheral zone, and background. To
train this encoder-classifier model, we used a balanced
dataset composed of 468689 pairs of labels and patches of
15× 15 pixels: 161607 patches for the background, 152042
patches for the central gland, and 155040 patches for the
peripheral zone. The training of Model-B consisted of a
fine-tuning of the weights of its last three layers using this
dataset of 468689 patches and labels.

The two models proposed in this work were tested using
the MRI images from the public dataset NCI-ISBI 2013
Challenge. The Model-A, with an encoder-decoder archi-
tecture, achieved a performance of DSC = 96.79%±0.15%
and IoU = 93.79%±0.29%; whereas the Model-B, with an
encoder-classifier architecture, achieved a performance of
DSC = 92.50%± 1.19% and IoU = 86.13%± 2.02%. The
comparison between the results of these models indicates
that Model-A performs better than Model-B, with 4.29%
and 7.66% for the DSC and IoU metric, respectively. The
superior performance of Model-A compared to Model-B
occurs because Model-A exploits the 2D geometrical struc-
ture in both the input and ground truth images, whereas

the Model-B exploits the 2D geometrical structure of the
input images only.

Future work includes the development and evaluation of
models that exploit the 3D structure of the MRIs for the
segmentation of the main parts of the prostate.
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conclude successfully her Master on Computer Science.

REFERENCES

Aldoj, N., Biavati, F., Michallek, F., Stober, S., and
Dewey, M. (2020). Automatic prostate and prostate
zones segmentation of magnetic resonance images us-
ing densenet-like u-net. Scientific Reports, 10. doi:
10.1038/s41598-020-71080-0.
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