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∗ Physiological Controls Research Center
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Abstract: Therapeutic optimization is a promising direction of computer aided medicine.
Optimization of chemotherapy based on mathematical models can result in lower doses, fewer
side effects, a smaller chance of acquired drug resistance and more efficient personification.
We explore model-based chemotherapy optimization for high frequency low dose therapies
with impulsive inputs. We keep the drug level over a specified value using the minimal
value of injection doses. We generate therapy for population mean parameters acquired from
identification based on mice experiments. We carry out in silico trials based on the results
of the individual fits from the identification process and test the therapy generated for the
population mean parameters. The results show that therapy optimization based on population
mean parameters can be used to generate therapy for the individuals and results in a solution
close to the optimal one without using specific knowledge about the individual.

Keywords: chemotherapy optimization, biomedical control, impulsive control, positive system,
compartment system

1. INTRODUCTION

Conventional chemotherapy protocols use large doses of
drugs with large resting time (i.e., the time between the
injections), see e.g., Pérez-Garćıa et al. (2019). A typical
approach is to use Maximal Tolerable Dose (MTD) of the
drug in hope of achieving maximal effect. On the contrary,
Low-Dose Metronomic chemotherapy (LDM) uses low dose
high density drug administration versus MTD treatment,
which was proven more effective e.g., against cancer cells
that tend to become resistant against the drug (Browder
et al. (2000)). Besides coping with resistance, LDM ther-
apy may also be cheaper and have less side effects. How-
ever, scheduling the therapy is challenging. An alternative
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to solve this problem is to create a mathematical model
of the tumor dynamics describing the effect of the drug
(Akhmetzhanov et al. (2019); Greene et al. (2019); Pérez-
Garćıa et al. (2019); Smalley et al. (2019)) and generate
the optimal therapy based on the model like in Cacace
et al. (2020); Drexler and Kovács (2019); Drexler et al.
(2017b); Pérez-Garćıa et al. (2019).

The mathematical model of tumor dynamics is a fun-
damental component of model-based optimization. There
are numerous tumor models in the literature, see e.g.,
the works of Altrock et al. (2015); Jarrett et al. (2018);
Lowengrub et al. (2010); here we focus on models described
by ordinary differential equations, since they are more suit-
able to describe population mean characteristics and their
handling in optimization and control is easier compared to
partial differential equations and other alternatives.

We use a fourth-order model created to describe mea-
surements from animal experiments first for angiogenic
therapy using bevacizumab (Drexler et al. (2017a); Sápi
et al. (2015)), and later for chemotherapy using pegylated
liposomal doxorubicin (PLD) in Drexler et al. (2020) based
on the experiments from Füredi et al. (2017), discussed
in Section 2. The latest model has four states variables,
two state variables for the living and dead tumor volume
dynamics and two state variables to describe the phar-
macokinetics of the drug as a two compartment model.



We formulate the optimization problem as maintaining
a predefined drug level during the therapy with the low
amount of injections, i.e., we carry out optimal impulsive
control of the two compartment pharmacokinetic model.

Optimal impulsive control of compartment systems has
long been engaged in the scientific community, see e.g.,
Pierce and Schumitzky (1976). The optimal solution for
keeping the drug level over a specified dose was given
by Kusuoka et al. (1981), which we briefly summarize in
Subsection 3.1. They also showed that if the time between
the injections is large enough, then the optimal therapy
consists of a larger dose at the beginning followed by
smaller doses with the same value for a compartment
model defining oral administration of a drug. We show
in Subsection 3.2 that this characteristics holds for two
compartment models if their dynamics and the resting
time satisfy certain conditions.

The optimal drug administration is tested in silico in
Section 4 with the tumor growth model given in Section
2 describing the effect of cytotoxic drug PLD discussed in
Drexler et al. (2020, 2019) applied for mice experiments
from Füredi et al. (2017). The robustness is tested by
generating the optimal therapy for the population mean
parameters in Subsection 4.1 and testing the generated
therapy for the individual fits in Subsection 4.2. The
results show that the generated therapy is effective on all
the individuals, which may indicate that personification
of the therapy may not require determining the specific
model parameters related to a patient; it is enough if we
know the mean parameters of a well specified group the
patient belongs to.

2. TUMOR GROWTH MODEL FOR
CHEMOTHERAPY

2.1 Tumor dynamics

We use a fourth-order model to describe tumor dynamics,
pharmacodynamics and pharmacokinetics as

ẋ1 = (a− n)x1 − b
x1x3

ED50 + x3
(1)

ẋ2 = nx1 + b
x1x3

ED50 + x3
− wx2 (2)

ẋ3 =− (c+ k1)x3 + k2x4 − bk
x1x3

ED50 + x3
(3)

ẋ4 = k1x3 − k2x4 (4)

where x1, x2, x3 and x4 are the time functions of the
living tumor volume, dead tumor volume, drug level in
the central compartment and drug level in the peripherial
compartment, respectively. The volumes are given in mm3,
while the drug levels are in mg/kg. The injections are
modeled as impulsive effects on the central compartment
x3. The output of the system is the total tumor volume

y = x1 + x2. (5)

The model parameters have been identified in Drexler
et al. (2020) using mice experiments from Füredi et al.
(2017). The identified parameters for the population mean
are shown in Table 1, while the identified parameter values
for the individuals (labeled as PLD2, PLD3, PLD4, PLD5,
PLD6, PLD9 and PLD10 in Füredi et al. (2017)) are shown

in Table 2. Note that the identification showed that the
value of bk is negligible, thus we use bk = 0 throughout
the paper and the parameter bk is not contained in the
Tables.

2.2 Pharmacodynamic model

The pharmacodynamics of the drug is defined by the Hill
function x3/(ED50 + x3) in the equations (1)-(3). This
function expresses that the effect of the drug is saturated,
thus after a given limit, increasing the drug level yields a
very low increase in the drug effect. The effective median
dose parameter ED50 is the drug concentration where the
effect is 50%, i.e., the value of the Hill function is 0.5.

The pharmacodynamics characterizes the desired value of
the drug level in the central compartment that should be
maintained by the therapy discussed in Section 3. One of
the constraints of the therapy optimization will be to keep
the drug level on the central compartment over a certain
limit m. Due to the pharmacodynamics, this limit will be
specified as a constant multiple of the ED50 parameter,
i.e., m = κED50. If κ is sufficiently large, the value of the
Hill function is close to 1, i.e., close to the maximal effect
of the drug. We will use κ = 100 in the in silico tests in
Section 4.

2.3 Pharmacokinetic model

The pharmacokinetics of the model is described by (3)-
(4), which is a linear time-invariant system if bk = 0.
The input of the system is impulsive and has effect on
x3. In the pharmacodynamics model described by the
Hill function in the last term of the right-hand side of
(1), x3 has effect on the tumor, thus the output yp of
the pharmacokinetic model is x3. Thus, the differential
equation of the pharmacokinetic model is(

ẋ3
ẋ4

)
=

(
−c− k1 k2
k1 −k2

)
︸ ︷︷ ︸

A

(
x3
x4

)
+

(
1
0

)
u (6)

with u being the sum of impulsive inputs, i.e.,

u(t) =

K−1∑
k=0

ukδ(t− tk), (7)

at t ≥ 0, where K is the total number of injections, tk,
k = 0, 1, . . . ,K − 1 is the time of injections with doses uk,
k = 0, 1, . . . ,K − 1, and δ is the Dirac delta distribution.

The response of the pharmacokinetic subsystem (6) with
output x3 for inputs (7) at time t can be written as the
sum of impulse responses of the system as

yp(t) =

K−1∑
k=0

w(t− tk)uk. (8)

The impulse response of the pharmacokinetic subsystem
is

w(t) =
λ1 + k2
λ1 − λ2

eλ1t +
λ2 + k2
λ2 − λ1

eλ2t, (9)

where λ1 and λ2 are the eigenvalues of the system matrix
A in (6) and can be expressed with the parameters as

λ1,2 =
− (c+ k1 + k2)±

√
(c+ k1 + k2)

2 − 4ck2

2
. (10)



Parameter Est. SE %RSE Back-transformed (95 %CI) BSV (CV%)

Log a -2.08 0.207 9.94 0.125 (0.0834, 0.187) 47.6
Log n -8.07 4.81 59.5 0.000312 (2.53·10�8, 3.85) 178.
Log b -0.801 0.296 37 0.449 (0.251, 0.802) 59.9
Log ED50 -7.48 3.18 42.5 0.000562 (1.11·10�6, 0.285) 2480.
Log w -3.29 0.42 12.7 0.0371 (0.0163, 0.0845) 143.
Log c -0.211 0.216 103 0.81 (0.53, 1.24) 36.2
Log k1 1.91 1.31 68.6 6.78 (0.518, 88.8) 82.0
Log k2 4.2 0.971 23.1 66.7 (9.95, 447) 113.
Additive error 109 109

Table 1. The estimated population mean parameter values for the model. (SE: standard error,
RSE: relative standard error, BSV: between-subject variation, CI: confidence interval, CV:

coefficient of variation.)

PLD2 PLD3 PLD4 PLD5 PLD6 PLD9 PLD10

a 0.1104 0.2155 0.1677 0.1409 0.1466 0.1005 0.06409
b 0.4201 0.4712 0.77 0.414 0.3977 0.6388 0.2283
c 0.9204 0.7113 1.124 0.5919 0.6352 0.7456 1.217

ED50 0.00148 5.03 · 10�5 8.96 · 10�5 0.0007299 0.001534 0.001392 0.0003237
k1 7.182 10.37 4.665 5.139 10.03 7.428 5.456
k2 74.43 34.27 69.09 139.9 62.82 69.76 60.57
n 0.0002683 0.0002695 0.0003212 0.0002778 0.0002762 0.0003446 0.0002824
w 0.01534 0.08779 0.06445 0.01481 0.0874 0.01193 0.0978

Table 2. The estimated parameter values for the individual fits

The pharmacokinetic subsystem is kinetic, thus it is pos-
itive (Érdi and Tóth (1989); Tóth et al. (2018); Vol’pert
(1972)), which implies that the impulse response of the
system is also positive for all t ≥ 0.

Lemma 1. The pharmacological subsystem is asymptoti-
cally stable and non-oscillatory.

Proof. Asymptotic stability is a consequence of the
compartmental system (Tóth et al. (2018)), and non-
oscillatory behaviour is the consequence of the positivity
of the planar system 2

Let λ1 be the eigenvalue with the larger absolute value,
thus we can write λ1 = βλ2 with β > 1. Using this
notation, the impulse response (9) can be reformulated
to

w(t) = eλ2t
λ2e

λ2(β−1)t (λ2β + k2)− (λ2 + k2)

λ2(β − 1)
. (11)

In general, for a second-order compartment model, the
impulse response is

w(t) = c1e
λ1t + c2e

λ2t, (12)

which can be reformulated as

w(t) = eλ2t
(
c1e

λ2(β−1)t + c2

)
. (13)

Assumption 1. We assume that β and t is large enough so
that eλ2(β−1)t ≈ 0.

Using the population mean parameters in Table 1, the
eigenvalues of the pharmacokinetic subsystem’s system
matrix are

λ1 = −73.55 (14)

λ2 = −0.7345, (15)

thus β = 100.13, and eλ2(β−1)t = 2.37 · 10−32 for t = 1
day, which can be considered as zero. In what follows, we
suppose that Assumption 1 holds and consider the term
exp(λ2(β − 1)t) as zero.

Lemma 2. Suppose that Assumption 1 holds, and let t2 >
t1 > 0, then

w(t2)

w(t1)
≈ e(t2−t1)λ2 . (16)

Proof. Using (11) and Assumption 1, we can write the
ratio of the impulse responses as

w(t2)

w(t1)
=
eλ2t2

(
c1e

λ2(β−1)t2 + c2
)

eλ2t1
(
c1eλ2(β−1)t1 + c2

) (17)

≈ eλ2t2c2
eλ2t1c2

=
eλ2t2

eλ2t1
= eλ2(t2−t1). (18)

2

Note that we will use equality in (16) later in the paper.

3. OPTIMAL IMPULSIVE THERAPY

We are looking for the optimal injection doses uk given at
times instants tk, k = 0, 1, . . . ,K − 1, such that the level
of the drug in the central compartment is large enough all
the time to have sufficiently large effect. This problem has
been addressed by Kusuoka et al. (1981), who formulated
and solved this optimization problem for compartmental
systems. We review their result in Subsection 3.1 and apply
them for our pharmacokinetic model and for the special
case of fix time between injections and two compartment
models in Subsection 3.2.

3.1 Optimal drug doses for compartment models

Let u = (u0, u2, . . . , uK−1)
>

and 1 = (1, 1, . . . , 1)
>

be a
column vector with elements of one and length K, and let
Φ be the matrix of impulse responses constructed as

Φ = {w(ti − tj−1)}i,j (19)

where i, j = 1, 2, . . . ,K, and tK is a time instant after the
last injection, i.e., tK > tK−1.



The goal is to have w(t) ≥ m for all t ≥ 0, where m is
the desired lower limit for the drug level, while having
positive injections and minimizing the total amount of
injections. Since the system is asymptotically stable and
non-oscillating, w(t) ≥ m for all t ≥ 0 is equivalent
to w(tk) ≥ m for all tk, k = 0, 1, . . . ,K. Thus, the
optimization problem can be written as

min 1>u (20)

subject to

Φu ≥ m1, u ≥ 0.

The solution to this optimization problem was given in
Kusuoka et al. (1981) as

ũ = mΦ−11. (21)

3.2 Optimal injection doses with fixed resting time

Let the time between the injections be fix and denote it by
Ts. Then, ti− tj = (i− j)Ts, for all i > j and i = 1, . . . ,K
(note that there is no injection at tK , it is the terminal
time of the therapy) and j = 0, 1, . . . ,K − 1. Thus, the
matrix of impulse responses can be written as

Φ =


w(Ts) 0 . . . 0
w(2Ts) w(Ts) . . . 0

...
...

. . .
...

w(KTs) w((K − 1)Ts) . . . w(Ts)

 (22)

which is a lower triangular Toeplitz matrix.

Lemma 3. Suppose that Assumption 1 holds. The inverse
of Φ given in (22) with fixed time between injections is a
lower triangular Toeplitz matrix with first column as

v = (v1, v2, 0, . . . , 0)
>

(23)

with v1 = 1/w(Ts) and v2 = −1/w(Ts)e
λ2Ts .

Proof. The inverse of a lower triangular Toeplitz matrix
is a lower triangular Toeplitz matrix whose elements can
be calculated recursively as shown in Trench (2009). Let

the first column of Φ be w = (w1, w2, . . . , wK)
>

with
wk := w(kTs) and the first column of the inverse matrix

be denoted by v = (v1, v2, . . . , vK)
>

. Then, the elements
of the inverse matrix can be calculated recursively as

vk = − 1

w1

k−1∑
n=1

vnwk−n+1, (24)

for k > 1 and v1 = 1/w1. Thus, for k = 2 we have

v2 = − 1

w1
v1w2 = − 1

w1

w2

w1
= − 1

w1
∆ (25)

with ∆ = w2/w1. For k = 3, we get

v3 =− 1

w1
(v1w3 + v2w2) = −v1w3

w1
− v2w2

w1

=−v1w3

w2

w2

w1
− v2w2

w1
= −v1∆2 − v2∆

=− 1

w1
∆2 −

(
− 1

w1
∆

)
∆ = 0 (26)

where we have used that ∆ = w2/w1 = w3/w2 = eTsλ2

due to Lemma 2. Similarly, ∆ = wk/wk−1 for all k =
2, . . . ,K, and wi/wj = ∆i−j for i > j, i = 2, 3, . . . ,K and
j = 1, 2, . . . ,K − 1. Generally, for k > 2, we have that

vk =− 1

w1
(v1wk + v2wk−1 + . . . vk−1w2)

=−
(
v1∆k−1 + v2∆k−2 + . . . vk−1∆

)
(27)

and for k + 1, we get

vk+1 =−
(
v1∆k + v2∆k−1 + . . . vk−1∆2 + vk∆

)
=−∆

(
v1∆k−1 + v2∆k−2 + . . . vk−1∆ + vk

)
=−∆

(
v1∆k−1 + v2∆k−2 + . . . vk−1∆

)
−∆vk

= ∆vk −∆vk = 0, (28)

which implies that vk = 0 for all k ≥ 3. Thus, the
inverse matrix is a lower triangular Toeplitz matrix with
the first element of its first column being 1/w1 = 1/w(Ts),
the second element of its first column being −1/w1∆ =
−1/w(Ts) exp(λ2Ts) and the remaining elements of the
first column are zero. 2

Theorem 4. Suppose that Assumption 1 holds. Then the
minimal injection doses that are required to keep the
drug level over a limit m are ũ0 = m/w(Ts) and ũk =
m/w(Ts)(1− exp(Tsλ2)) for k = 1, 2, . . . ,K − 1.

Proof. Substitute the result of Lemma 3 into (21). 2

This result has been shown by Kusuoka et al. (1981) using
different derivation for a specific two compartment system
describing the pharmacokinetics of oral drug administra-
tion. We showed here that this is true for general two
compartment models if Assumption 1 holds. Moreover,
this result can be generalized for any compartments if
they have a dominant eigenvalue and the resting time
is sufficiently large. Note that a condition for (21) to
be optimal is that the resting time is larger than the
time when the impulse response of the system reaches its
maximum (and due to nonoscillatory behaviour, there is
only one such time) as it was shown by Kusuoka et al.
(1981). Assumption 1 also implies that this condition is
satisfied.

4. IN SILICO ROBUSTNESS ANALYSIS

4.1 Therapy generation for the population mean

First, we carried out in silico test of the optimal input
generation algorithm for the population mean parameters
provided in Table 1 with rest period of Ts = 1 day and
30 days of therapy. Initially, the living tumor volume was
considered to be 200 mm3, while all the other variables
were initially zero.

The generated injection doses are shown by the green dots
in the lower figure of Fig. 1, while the drug level in the
central compartment is shown by the blue solid curve in
the lower figure. The upper figure of Fig. 1 shows the effect
of the therapy on the living (green curve), dead (red curve)
and total tumor volumes (blue curve). The results show
that the therapy is effective in the 30 days since the living
tumor cells are eliminated after about 11 days. After this
time, the total tumor volume is almost entirely consisted
of the dead tumor cells.

4.2 Effect of the generated therapy on the individuals

Next, we used the therapy generated for the population
mean parameters in Subsection 4.1 and applied it in silico
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Fig. 1. The optimal therapy generated for the population
mean parameters and tested in silico with the popu-
lation mean parameters

for the individual fits with parameters given in Table 2.
The resting time was chosen as 1 day and the final time
as 30 days, the same way as in Subsection 4.1. Also, the
initial value of the living tumor volume was considered to
be 200 mm3, while all the other variables were initially set
to zero.

Figure 2 shows the regression of the living tumor volumes.
These curves show an exponential behaviour, since these
are the solutions of the differential equation (1), which can
be approximated as

ẋ1 ≥
(
a− n− b x3,min

ED50 + x3,min

)
x1, (29)

and since the derivative of the Hill function x3/(ED50+x3)
is small for x3 >> ED50 which holds for x3,min due
to the constraints of the therapy, the dynamics of the
living tumor volume is close to linear, and can be well
approximated by an exponential curve.

For comparison of the effect of the therapy on the individu-
als, we have determined a regression time constant Treg for
all the in silico results by constructing the tangent lines at
zero for all the living tumor volume curves and calculating
the intersection of these lines with the time axis. The time
constants are shown in Table 3 in ascending order along
with the corresponding b and ED50 parameters of the
individuals. The results show that the regression time is
in close relation with the parameter b which characterizes
the effect of the drug, since the parameter b decreases as
Treg increases. The only exception for this is for PLD3,
which has a much larger tumor growth rate parameter a
than the other individuals which is 72.5% larger than the
population mean (see Table 2). The last row of Table 3
shows the derived value of a−n−bx3,min/(ED50+x3,min)
for each individual, which is the rate of the approximating
differential equation (29) and truly characterizes the speed
of regression.
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Fig. 2. The living tumor volumes (x1) with the optimal
therapy generated for the population mean parame-
ters and tested in silico with the individual fits

5. CONCLUSION

The minimal injection doses to keep the drug level in the
central compartment above a specified limit (100 times the
effective median dose) were calculated for the virtual mice
with mean value parameters, and the generated therapy
was tested in silico with the parameter sets describing the
real mice acquired from parametric identification based
on experiments. The in silico trials prove that therapy
generation can be done based on pharmacological parame-
ters, while the parameters specific to tumor dynamics only
describe the final outcome resulted from the therapy, and
have no effect on the required input, apart from the length
of the therapy.

Furthermore, the in silico trials showed that if we can
cluster patients based on the tumor model parameters and
can specify mean value parameters for the given clusters,
then the therapy can be generated for the mean values and
will result in a therapy close to optimal for all the patients
in the cluster.
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