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Abstract: In order to analyze the effect of vaccination in a population with the presence
of viruses, a variation of the SIR (Susceptible-Infected-Removed) model is proposed taking
into account social distancing and the effect of the vaccine. The equilibrium points of the
proposed model are calculated and the stability analysis of the system is carried out. For the
proposed model, disease-free equilibrium point and endemic equilibrium point are found and
the conditions of existence are discussed. For the disease-free equilibrium point the bifurcation
conditions are derived and simulations show that reducing the vaccination effort can lead the
disease-free equilibrium to the endemic equilibrium. From the theoretical analysis, a minimum
value of effort is obtained to guarantee a disease-free equilibrium point. Simulations were carried
out from the value obtained from Rv to validate the theoretical results.
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1. INTRODUCTION

Nowadays, the risk of a virus becoming a pandemic is
huge. This is largely due to technological advances in
transportation. What used to take months to travel from
one continent to another, today takes only a few hours.
That is why the interest on modelling those systems that
describe the behaviour of these diseases is increasing over
the years.

An example of this is the case of COVID-19, which in a
few months became one of the most serious pandemics in
history, claiming the lives of millions of people around the
world.

Coronavirus disease (COVID-19) is an infectious disease
caused by a newly discovered coronavirus. Most people
who become ill from COVID-19 will have mild to moderate
symptoms and will recover without special treatment.

The virus is mainly transmitted through droplets gener-
ated when an infected person coughs, sneezes, or exhales.
These droplets are heavy to remain suspended in the air
and are quickly deposited on floors or surfaces, facilitating
the transmission by touch on contaminated surfaces by
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taking the hands to the eyes or upper tracts, in addition
to transmission by inhalation of the virus.

In its most severe manifestation, the virus causes an ac-
centuated respiratory condition, leading the patient to hos-
pitalization that can be intensive and prolonged. Another
particularity of the new cornavirus is its high transmission
rate, which may be caused by the virus’s ability to survive
longer outside the human body (Kampf et al., 2020).

The interest in understanding the proliferation of infec-
tious diseases is old, as well as the study of epidemiology,
although the mathematical study of diseases is recent,
Graunt, in 1662, studied statistical methods in public
health (Graunt, 1662).

The first attempts to model the spread of a disease date
from the second half of the 18th century. In 1760, a swiss
mathematician named Daniel Bernoulli, presented a model
to study variations in smallpox. In 1927, Kermack and
McKendrick proposed the SIR model (Kermack and McK-
endrick, 1927), (Kermack and McKendrick, 1932),(Ker-
mack and McKendrick, 1933) that considers a disease that
develops over time and has only three classes of individuals
(Susceptible, Infected and Removed). This compartmental
model shows the relationship between the appearance of an
epidemic at a critical value, which depends on the number
of susceptible individuals, noting that such value depends



on the infectivity rate, the recovery rate and the mortality
rate.

Many compartmental models have contributed to the
study of COVID-19, evaluating the importance of social
isolation (Pan et al., 2020), quarantine (Volpert et al.,
2020), quarantine at different stages of contagion (Mishra
et al., 2020), the study of unreported cases (Cotta et al.,
2020), (Lee et al., 2020), the impact of vaccination on
society (Batistela et al., 2020) and the possibility that the
acquired immunity may be temporary (Batistela et al.,
2021).

At this moment, the production of vaccines against
COVID-19 is very limited. Currently the percentage of the
vaccinated population is too low to control the pandemic.
Vaccination in the event of a pandemic is one of the most
effective interventions for its control. However, the avail-
ability of the pandemic vaccine will be very limited during
the first wave of the pandemic, especially for countries that
are not vaccine producers (Osterholm, 2005).

The mathematical modelling of infectious diseases is the
subject of interest in many research papers (Khoshnaw
et al., 2020; Zine et al., 2020; Elie et al., 2020). The study
that has been developed by various sources consulted,
which include publications in prominent media in the
area of medicine (Llop, 2020), (Organization et al., 2021),
(Organization et al., 2020), (Mart́ı, 2016), (Galindo San-
tana et al., 2011) as well as in several research institutes

(Sanchez-Castro and Pajuelo-Reyes, 2020), (Álvarez and
Andrus, 2005), shows the potential of mathematical mod-
elling as a tool.

Mathematical modeling is an important to guide public
policy. With a focus on controlling the pandemic, these
strategies are needed to reduce the spread of the disease,
control the number of infected and prevent the emergence
of new variants. In addition, they aim to reduce the num-
ber of hospitalizations to avoid a breakdown in the health
system and establish qualitative and quantitative infor-
mation for the vaccination program. Not only to prevent
the levels of spread of a virus in general, but also as an in-
strument in decision-making for resource management and
prevention of calamity scenarios, allowing the possibility
of projecting simulations with various degrees of precision.

This work aims to achieve a better understanding of
the influence caused by the vaccination rate and social
distancing on the spread of the epidemic. Study and
evaluate what is the minimum effort necessary to achieve a
stable disease-free equilibrium point to mitigate the spread
of the virus.

The paper also intends to guide, in a macroscopic way,
future work regarding the qualitative and quantitative
prediction by validating the model using real data for
COVID-19.

In addition, it is possible to use the research as a guide for
studies of stochastic models, and particularly it is possible
to obtain information, taking into account new COVID-
19 forms such as Delta variant and the effect of super-
spreaders, people who significantly infect more people than
normal.

The paper is organized as follows, Section 2 presents the
compartmental mathematical model and the equilibrium
points. Section 3 presents the stability conditions, showing
the possible existence and numerical experiments followed
by the conclusions.

2. MODELS DESCRIPTIONS

The proposed model is a modification of the original
SIR (Susceptible-Infected-Removed) model (Kermack and
McKendrick, 1927), (Kermack and McKendrick, 1932),
(Kermack and McKendrick, 1933) as shown in Fig. 1. In
this model, the susceptible population S is infected at a
rate α when contacted by an infected individuals from I.
The effect of social distancing measures in the susceptible
individuals is introduced by the parameter θ, and the
subject to the constrait 0 < θ < 1 and ω is the group
to which vaccination is given.

The compartment I represents the infectious population
in the incubation stage prior the onset of symptons and
this population can be asymptomatic or symptomatic. The
total population is considered constant, the death rate are
equal for members of all classes, µ is the death and birth
rate which are assumed to be equal and β is the recovery
rate.

Fig. 1. SIR model with vaccine influence and social isola-
tion.

The model assumes the following hypotheses:

• Fixed population;
• The ways to stop being susceptible is if a person

becomes infected, if he is immunized by vaccination
or by the mortality rate;

• When the person recovers, they receive permanent
immunity;

• The probability of infection is not affected by age, sex
or social status;

• The birth and death rate are part of the considera-
tions;

• All births fall into the susceptible class;
• The mortality rate is the same for all compartments

and mortality is assumed to be equal to the birth rate.

The model assumes the following notations:

• S (t): Number of susceptible individuals at time (t);
• I (t): Number of infected individuals at time (t);
• R (t): Number of individuals recovered at time (t);
• α: probability of a susceptible individual becoming

infected;
• β: probability of an infected recovering;
• θ: social isolation rate;
• ω: vaccination rate of the susceptible;
• µ: mortality rate;
• N: the death is equal for members of all three classes,

and it is assumed that the birth and death rates are
equal so that the total population is stationary.



2.1 Equations

Considering these elements, the model can be described
as:

Ṡ = µN − α(1 − θ)S(t)I(t)

N
− ωS(t) − µS(t);

İ =
α(1 − θ)S(t)I(t)

N
− βI(t) − µI(t);

Ṙ = βI(t) + ωS(t) − µR(t).

(1)

With constant populations:

S(t) + I(t) +R(t) = N. (2)

consequently:

Ṡ + İ + Ṙ = 0. (3)

Taking into account the population density:

s =
S

N
; i =

I

N
; r =

R

N
. (4)

By substituting ( 4) in ( 1): ṡ = µ− α(1 − θ)si− ωs− µs;
i̇ = α(1 − θ)si− βi− µi;
ṙ = βi+ ωs− µr;

(5)

with the initial conditions s(0) ≥ 0, i(0) ≥ 0 and r(0) ≥
0.

Here µ is the recruitment and natural death rate, α is
the effective contact rate between susceptible and infected
individuals, ω is the rate of vaccination and θ is the social
isolation. All the parametrs are positive and for θ the
restriction consideres 0 < θ < 1.

For the proposed model, there are two equilibrium points:
one endemic and the other free from infection.

Disease-free equilibrium point:

• P1 (s∗,i∗,r∗) = ( µ
ω+µ , 0,

µω
ω+µ );

Endemic equilibrium point:

• P2 (s∗,i∗,r∗)=( β+µ
α(1−θ) ,

−(ω+µ)
α(1−θ) + µ

β+µ ,

β
µ

(
−(ω+µ)
α(1−θ) + µ

β+µ

)
+ ω

µ
β+µ
α(1−θ) );

such as:
−(ω + µ)

α(1 − θ)
+

µ

β + µ
> 0, (6)

then,

ω <
µα(1 − θ)

β + µ
− µ. (7)

From the analysis of the endemic point, it can be seen
that to guarantee its existence, it is necessary to respect
the condition 6. Analyzing this point, the minimum
vaccination effort necessary to reach the point free of
infection can be concluded. This result is evidenced in ( 7).

2.2 Basic Reproduction Number R0

This parameter describes the behaviour of the system
model and represents the number of susceptible individuals
that an infected person can infect.

In our model, without considering the impact of vaccina-
tion, the basic reproduction number is given by 8. As
can be seen in Fig. 1, the effect of vaccination is given by
the parameter ω. This parameter influences the reduction
of the number of susceptible individuals. This influence
causes the R0 to vary. In the same way that it was carried
out in (Chauhan et al., 2014), (Batistela et al., 2020) the
new basic reproduction number is defined as in 9.

R0 =
α(1 − θ)

β + µ
; (8)

Rv = (1 − ω)
α(1 − θ)

β + µ
. (9)

3. STABILITY ANALYSIS

In order to analyze the local stability of the system, the
Jacobian of the model is calculated at the equilibrium
points.

J =

[−α(1 − θ)i∗ − ω − µ −α(1 − θ)s∗ 0
α(1 − θ)i∗ α(1 − θ)s∗ − β − µ 0

ω β −µ

]
.

Analyzing the Jacobian at point P1:

JP1 =

[−ω − µ −α(1 − θ)s∗ 0
0 α(1 − θ)s∗ − β − µ 0
ω β −µ

]
.

Using the mathematical tool Matlab 2015, the eigenvalues
of the resulting Jacobian matrix are calculated, in order
to analyze the stability of the equilibrium point.

Eigenvalues P1:

λ1 = -µ;
λ2 = -ω − µ;
λ3 = α(1 − θ)s∗ − β − µ.

The stability analysis for model 5 presents the disease free
equilibrium point and, considering the existence condition,
the eigenvalues are given by λ1 = -µ, λ2 = -ω - µ and λ3
= α(1 − θ)s∗ − β − µ. This indicates that if (s∗ < β+µ

α(1−θ) )

the system is asymptotically stable and if (s∗ > β+µ
α(1−θ) )

the system becomes unstable indicating a bifurcation in
the parameter space.

Analyzing the Jacobian at point P2:

JP2 =


−α(1 − θ)µ

β + µ
−β 0

−ω − µ+
α(1 − θ)µ

β + µ
0 0

ω β −µ

 .
Solving for the determinant of the resulting Jacobian
matrix:

(−µ− λ)3+3[−λ(
−α(1 − θ)µ

β + µ
− λ) +

β(−ω − µ+
α(1 − θ)µ

β + µ
)] = 0; (10)



Consequently, one of the eigenvalues λ1 = −µ and the
other eigenvalues are analyzed by:

λ2 +
α(1 − θ)µ

β + µ
λ+

(
α(1 − θ)µ

β + µ
− (ω + µ)

)
β = 0. (11)

The Routh Hurwitz method was used to analyze the
stability of the system. To guarantee this stability, the
terms of the characteristic polynomial must all be positive
since it is a second-order polynomial (Lee, 2008). As can
be seen in ( 11), the independent term is only greater
than zero when the condition of existence ( 6) is satisfied.
Therefore it can be stated that the endemic point, if it
exists, is asymptotically stable.

3.1 Numerical Experiments

In order to analyze the stability of point P1 and the
existence and stability of point P2, numerical experiments
were carried out.

The theoretical analysis of point P1 shows the bifurcation
condition s∗ = β+µ

α(1−θ) , for which the system can be stable

or unstable, depending on the values of the parameters, as
shown in Fig. 2 and Fig. 3.

To guarantee the stability condition, the following param-
eter values were chosen: α = 0.9, β = 0.7, θ = 0.1, µ = 0.3
and ω = 0.1. With the initial conditions (s, i, r) = (0.1, 0.8,
0.1). The parameters values are chosen in order to show
explicitly the qualitative behaviour of the system, to the
detriment of a more realistic choice of values (Chauhan
et al., 2014), as shown in Fig. 2.

On the other hand, when the parameters are α = 0.9, β =
0.3, θ = 0.1, µ = 0.3 and ω = 0.1., the instability of point
P1 can be observed, since starting from a neighborhood of
this point, point P2 is reached. With the initial conditions
(s, i, r) = (0.9, 0.1, 0), as shown in Fig. 3.
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Fig. 2. Point P1 stable.

The theoretical analysis also shows the existence of an
endemic point P2. To analyze the behaviour of the sys-
tem considering the vaccination factor ω, the numerical
experiments shown in Fig. 4 and Fig. 5 respectively were
carried out. The initial conditions for both cases are: (s, i,
r) = (0.7, 0.3, 0).
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Fig. 3. Point P1 unstable.
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Fig. 4. Stability of P1 considering Rv < 1.
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Fig. 5. Stability of P2 considering Rv > 1.

In the Fig. 6 the stability of point P1 is observed when Rv
< 1. For any initial condition, the system always reaches
the disease-free point. The lines describe the direction of
the possible trajectories of the system depending on the
initial conditions.

In the Fig. 6 shows the phase diagram of the system with
the combination of parameters so that the existence of a



disease-free equilibrium point is guaranteed. Each trajec-
tory represents a possible initial condition of the system
variables (Susceptible and Infected) and their evolution
over time until reaching the equilibrium point. The arrows
indicate the direction of movement of the trajectories.

It can be verified that the disease-free equilibrium point
P1, if it exists, is asymptotically stable as concluded in
the stability analysis in Section 3. This shows that, given
this combination of parameters, it does not matter how
large the initial population of infected, the system is able
to completely eradicate the disease.
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Fig. 6. Phase space for P1 considering Rv. α=0.9, β=0.3,
θ=0.3, µ=0.1 and ω=0.1.

In the Fig. 7 the stability of point P2 is observed when
Rv > 1 and shows the phase diagram of the system
with the combination of parameters exposed in (7) so
that the existence of an endemic point is guaranteed.
Each trajectory represents a possible initial condition of
the system variables (Susceptible and Infected) and their
evolution over time until reaching the endemic equilibrium
point. The arrows indicate the direction of movement of
the trajectories.

It can be verified that the endemic equilibrium point P2,
if it exists, is asymptotically stable as concluded in the
stability analysis in Section 3. This shows that, given
this combination of parameters, it will not be possible to
eradicate the disease.
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Fig. 7. Phase space for P2 considering Rv. α=1.9, β=0.3,
θ=0.3, µ=0.1 and ω=0.06.

4. CONCLUSION

The model presented shows how a forced vaccination
strategy can contribute to the control of a pandemic in
general.

Doing a stability analysis of the model, it can be seen that
it has two equilibrium points of interest, one endemic (P2)
and the other free of disease (P1).

The stability study of these points shows how social
isolation and the vaccination effort influence the spread
of the disease.

For the disease-free equilibrium point P1, which there is
a bifurcation condition, the stability of these point can
be changed by changing Rv. With the decrease in the
vaccination effort ω and the consequent increase in Rv,
the infection-free asymptotically stable point tends to an
endemic equilibrium point P2.

The results of the analysis shows:

• Rv < 1, the point P1 free of infection is always
reached independently of the number of the infected
population.

• Rv > 1 the point P1 is unstable and the system goes
to the endemic point P2.

For the endemic equilibrium point P2, due to the condi-
tions of existence, the study is only possible considering
Rv > 1, indicating that, regardless of the initial conditions,
the point remains stable.
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