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Abstract:
The White Matter Hyperintensities (WMHs) are usually associated with diabetes which is
relevant in medical research to understand the long-term affection of diabetes. However, there
is not enough evidence to distinguish whether the WMHs observed in diabetes subjects are
structurally different from those observed in healthy subjects. This work aims to recognize
the patterns associated with diabetes using the WMHs features of diabetic patients. We
used Machine Learning models, such as Logistic Regression (LR), Support Vector Machines
(SVM), Random Forest (RF), and a Multilayer perceptron (MLP) Neural Network to classify
the features extracted from the WMH segments from T1 and FLAIR sequences of Magnetic
Resonance Images (MRI) obtained from diabetic patients. Four classification models were
evaluated and compared in their performance and Logistic Regression showed the best results,
with an accuracy of 88%, as belonging or not to a diabetic class. Our results showed that diabetic
patients have WMH patterns that are structurally different from controls, which may be useful
for patients follow up.
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1. INTRODUCTION

Diabetes mellitus type 2 is a chronic disease associated
with problems in the carbohydrate metabolism. According
to the World Health Organization, WHO (2016), in 2014
around 8.5% of adults in the world suffered from this
disorder. Some causes that lead to diabetes are: depres-
sion, anxiety, and eating disorders, which are known as
comorbidities of Diabetes, Ducat et al. (2014). Long-term
effects of diabetes include retinopathy, diabetic neuropa-
thy, diabetic ulcer, autonomic and sexual dysfunctions, as
described by Singh et al. (2016). Furthermore, Biessels
et al. (2006) indicates that patients with diabetes are
more prone to developing dementia, due to some shared
mechanisms with Alzheimer disease and changes in brain
microvasculature.

The most common methods for diagnosing diabetes are
clinical tests, such as sugar in urine and blood, glucose
resistance, renal glucose threshold, intravenous and oral
glucose resistance, Singh et al. (2016); however, due to
the impact that diabetes has on brain morphology, studies

point to using brain scanning for diabetes treatment and
follow up, Moheet et al. (2015). One mechanism to identify
structural changes and brain lesions caused by small vessel
diseases is Magnetic Resonance Imaging (MRI), in differ-
ent modalities, such as T1 weighted and FLAIR sequences,
Christopher (2020); Saver et al. (2016). The White Matter
Hyperintensities (WMH) are hyperintense brain regions,
observed in fluid-attenuated inversion recovery (FLAIR)
sequences of MRI, as part of the spectrum of small ves-
sel diseases, such as hemorrhagic stroke, microbleeds and
brain atrophy Maarten et al. (2012). These hyperinten-
sities show brain lesions, caused by several diseases, in-
cluding diabetes. Araki et al. (1994) found that WMH do
not differentiate diabetic and non-diabetic patients. On
the other hand, the presence of WMH in healthy subjects
is commonly associated with aging, and it appears on
subjects over sixty years old, as reported by Almkvist
et al. (1992), but it has been also observed in a young
healthy population, Hopkins et al. (2006). Additionally, it
is well known that WMH is commonly related to diabetes,
which is a major risk for cerebral infarction, Tamura and
Araki (2015); however, it is poorly understood whether



the WMH observed in diabetes subjects are structurally
different from those observed in healthy subjects. There-
fore in this research, we propose the use of Artificial In-
telligence (AI) algorithms to segment WMH, extract the
features of the WMH’s structural morphology, and then
apply machine learning models to recognize and classify
the patterns as belonging to a diabetic class or not.

This paper is organized as follows: Section 2 describes the
methodology, as well as the data sets used in the exper-
iments, their pre-processing, hyper-parameters settings,
feature extraction, and a description of the environment
used to implement the models; in Section 3, the proposed
models’ configurations are described; section 4 presents the
results of the experiments using the proposed models; and,
in section 5 some conclusions are drawn.

2. DATA AND METHODS

2.1 Imaging Data

For this work, three datasets containing MRI images
were used: 1) A dataset of Ecuadorian subjects diagnosed
with diabetes mellitus type II, extracted from the image
database of a local MSP hospital in Ecuador, this dataset
consisted of 64 pairs of MRI DICOM images per subject:
T1 weighted (MPRAGE) and Fluid Attenued Inversion
Recovery (FLAIR), which were anonymized using the
conventional NIFTI format. The dataset contains images
of patients diagnosed with diabetes mellitus type II. 2)
A dataset containing 45 pairs of images from patients
diagnosed with diabetes Mellitus type II, which were ob-
tained from the Alzheimer Disease Neuroimaging Initiative
(ADNI) database 1 ; and 3) A dataset with images from 41
healthy control subjects, obtained from the Neuroimag-
ing Laboratory, University of Navarra from the studies
described in Loayza et al. (2011); Aznárez-Sanado et al.
(2013); Luis et al. (2015). A summary of the datasets can
be seen in Table 1. In addition, demographic information
was also recorded for each subject, as it is shown in Table
2, which describes the demographic data, such as: Age,
sex, an internal ID and a unique identifier for the subject’s
MRI images.

Table 1. Number of subjects per type of image

Format Diabetes Healthy

FLAIR 109 41
T1 109 41

2.2 Preprocessing

Coregistration. Each pair of images per subject, were
coregistered between them, using the SITK library, Insight
Software Consortium (2020). Since each type could have
different orientations and dimensions, in order to increase
the number of slices, the FLAIR images were resliced to
the T1 reference using a cubic interpolation procedure.
The cubic interpolation reslicing technique used a third
degree polynomial. We assume that points (xi, yi) and
(xi−1, yi−1) can be represented by a cubic polynomial
function, such as f(x) = ax3 + bx2 + cx + d for every
point xi <= x <= xi+1. To determine the coefficients a,b,c

1 www.adni.loni.usc.edu

Table 2. Subject’s demographic data

Group Age (y) Sex Statistics

DMII 64.4 0.54 F=2.435, p=0.36

HCs 56.6 0.55 F=2.995, p=0.33

Fig. 1. MPRAGE and FLAIR image overlaid. Left image,
the T1 weighted MPRAGE. Right in red, the overlaid
FLAIR over the T1.

and d required by the cubic function, we used four points.
When the values of the function f(x) and its derivative at
x = 0 and x = 1 are known, as it is expressed in (1).

f(y0, y1, y2, y3, x) = (− 1
2y0 + 3

2y1 −
3
2y2 + 1

2y3)x3+

(y0 − 5
2y1 + 2y2 − 1

2y3)x2 + (− 1
2y0 + 1

2y2)x+ y1
(1)

Figure 1 shows the results of the interpolation, on the left
there is a MPRAGE image, and on the right the FLAIR
image, which has been overlapped with the MPRAGE
image. As it can be seen the dimensions and orientation
have been correctly adjusted.

2.3 Segmentation

Once the images have been preprocessed, the next step
consisted in segmenting the images, which allowed us to
locate the WMH observed in FLAIR images; for this
purpose a Convolution Neural Network (CNN) model
with a U-net architecture was used. This architecture was
originally created to recognize WHM patterns, as reported
in Viteri J. and F. (2021), with an end-to-end architecture,
which is able to recognize the lesions’ patterns and to
segment them from the FLAIR and T1 brain images.
The result of applying this algorithm is a mask of WMH
segments, as it is shown in red in Figure 2.

2.4 Feature Extraction

With the segments identifying the diabetes lesions in the
brain images, the next step consisted in extracting the
features that best described the segments; for performing
this task we use the set of functions available in the Python
SimpleITK library. The following filters and functions were
applied to extract the features from the segmented binary
mask images:

• Statistics Image Filter – used to extract statistical
data, such as the average, mean, variance, maximum
and minimum of each image segment.



Fig. 2. WMH lesions segmentation. Left panel, in red the
overlapped binary mask obtained by the U-net model.
Right panel the FLAIR image

• Atan Image Filter – used to evaluate the inverse
tangent function.

• Cos Image Filter – used to evaluate the cosine func-
tion.

• Morphological Watershed – filter used to perform
morphological operations.

• Sobel Edge Detection Image Filter – used for 2D and
3D edge detection using the Sobel operator.

• Bounded Reciprocal Image Filter – used to filter with
the function 1/(1+x).

• Zero-Crossing Based Edge Detection Image Filter –
used for edge detection based on intensity variation.

To identify individual lesions in the binary masks, repre-
sented as 3D matrix, the following criteria was used:

(1) The mask is represented by a 3D matrix with variable
dimensions, depending on the initial MRI.

(2) The absence of a lesion is represented by ”0” and the
presence by ”1”.

(3) The first lesion is identified in the first cell that
has the value ”1”, and has not been previously
categorized as part of another lesion.

(4) All adjacent and diagonal cells that have the value
”1” are considered to be part of the lesion.

(5) If no more adjacent lesions are found, search for
another cell with a value ”1” not assigned to a lesion.

To identify the volume of the lesions, the number of cells
that had a value ”1” were added and multiplied by the
value of the pixel volume. This volume can be assessed
by multiplying the spaces, specified in the MRI metadata,
giving an approximate volume of the lesions; then the total
number of lesions and the average volume were calculated.

Considering a matrix M , which represents the MRI mask
for a patient with dimension (x, y, z), the volume of a lesion
is represented by (2):

Pixel volume V = (

x∑
i=1

y∑
j=1

z∑
k=1

Mijk) (2)

2.5 Feature Selection

For selecting the features to be used in the classification
process, a covariance matrix, such as the one represented
in Figure 3, was used to rule out those characteristics that
do not have a strong, or have a weak covariance with
respect to the output variable, which in this case represents

Fig. 3. Covariance matrix represented by a heatmap

the presence or absence of the patterns associated with
diabetes.

From the analysis of the covariance matrix, the following
selected features showed a strong relation with respect to
the disease:

• The mean of the image.
• The mean after applying the inverse tangent function

at each pixel.
• The mean after applying the Cosine Filter.
• The Zero-Crossing Based on Edge Detection.
• The mean volume of the segments.
• The number of lesions.

2.6 Implementation Environment

For extracting the features from the binary mask images,
representing the segments, the following functions were
used from the Python’s SimpleITK library developed by
Insight Software Consortium (2020):

• SITK: To read the images in DICOM and NIFTI
formats.

• Numpy: To perform tensor and matrix operations.
• Scikit-Image: To perform dimension operations on

images.
• Scikit-learn: To implement the classification models.

For implementing the deep learning models, used for seg-
menting the MRI images, we used Google-Collab (2020),
as a virtual service with access to an Intel(R) Xeon(R)
CPU @ 2.30GHz, with 1 core and 12 GB of RAM. The
segmentation process for a set of MRI images, belonging to
each patient, in this implementation environment took in
average 43 seconds, which represents around 170 minutes
for the 150 subjects.

3. CLASSIFICATION MODELS

After extracting the features from the segmented images,
captured in the binary masks, the classification process
was performed. For this process four classification models
were evaluated and compared: a) Support Vector Machines



(SVMs); b) Random Forest (RF); c) Logistic Regression
(LR); and, d) an MLP Neural Network.

Table 3. Relevant hyper-parameters setting for
each model

Model Hyper-parameters

Logistic Regression solver = ”lbfgs”

Support Vector Machine kernel = “linear”
gamma = (“scale”, “auto”)

Random Forest n estimator = 1000

MLP epochs = 30

The hyper-parameters used in these models are shown in
Table 3. The solver parameter for the Logistic Regression
model refers to the optimization algorithm used, in this
case L-BFGS.

The gamma coefficient for the kernel used in the SVM
model was set to 2.28e-05, after extracted from a grid
search. For the RF model the n parameter estimator,
representing the number of trees used, was set to 1000. For
the MLP model, the number of training epochs was set to
30, after observing the behavior of loss vs. the number of
epochs, where the validation accuracy began to decrease,
and at the same time the loss started to increase.

3.1 Logistic Regression

Given the prediction problem we have is a binary classifi-
cation task; that is, to predict the presence or absence of
the patterns related to diabetes in a MRI image, we have
chosen LR as one of the classification models, which can
be designed to estimate a probability distribution of the
expected prediction.

For implementing the LR model we used the Scikitlearn
library version 0.22.2, available in Python. It computes
the probability of finding the patterns, within the features
extracted from the segments at the input MRI image,
and assigns that probability value to the class labeled
as diabetes. If the computed probability is grater than a
threshold set to 0.7, the patient is diagnosed with diabetes,
represented as 1, otherwise 0.

LR as a linear classifier, evaluates a linear function as it is
expressed in (3):

f(x) = β0 + β1X1 + β2X2 + . . . βkXk (3)

Where x = (X1, X2 . . . Xk) are the estimators of the
regression coefficients and represent the features extracted
from the segments used as inputs. The LR model is
the Sigmoid function of f(x), as defined by (4), which
produces a value close to either 0 or 1. β = (β1, β2 . . . βk)
are the predicted weights or learned coefficients, such
that the function p(x), as defined in (4), is as close as
possible to all predicted outputs, discovered from the input
examples maximizing the Log-Likelihood (LL) function for
all observations, which is represented by (5).

f(x) : p(x) =
1

1 + e(−f(x))
(4)

LL =
∑
i

(yilog(p(xi)) + (1 − yi)log(1 − p(xi))) (5)

Where yi denotes the predicted output and as before, xi
represents the features extracted from the segments of each
MRI image.

3.2 Support Vector Machine

The Support Vector Machine (SVM) model used in this
classification problem is based on a supervised learning
strategy that maximizes a function with respect to an
input collection of data, Noble (2006). The SVM model
is focused in the separation of clusters with a hyperplane.
However, it differs from other hyperplane-based classifiers
by how the hyperplane is selected or discovered using
a machine learning strategy; in this case the features
extracted from the segments of each MRI image are used
as the input, then it tries to maximize the margin of the
vectors that define the hyperplane.

For implementing the SVM model, we have used the
Sklearn SVC library available in Python, which discovers
a hyperplane in a high-dimesional space; we use a linear
kernel function to discover the hyperplane that best max-
imizes the expected margin. The Gamma value was set
to 2.28e-05, given the linear kernel used for learning the
hyperplane to fit the training dataset.

3.3 Random Forest

Caie et al. (2020) defines a Random Forest classifier as
a two stage algorithm. In this work, the training phase
involved the construction of several “simple” decision
trees, then in the classification phase the decision is made
by a majority of votes across those trees; hence, the output
value is the average of the output values from the different
decision trees assembled; in this case n, the number of
decision trees estimator was set to 1000. As before a voting
system was used to predict the presence or not of diabetes,
which it has also been reduced to a binary classification
problem.

3.4 MLP Neural Network

The Multi-Layer Perceptron (MLP) Neural Network, as
defined by Du and Swamy (2014), is a full feedforward
network that includes intermediate layers of units between
the input and output layers. MLPs are commonly used for
classification of linearly separable patterns as binary func-
tion approximators. For implementing the MLP we have
used the Keras library version 2.4.3 available in Python.
The MLP architecture was designed with 4 layers. The
input layer was configured with 6 neurons corresponding
to the number of input features; 2 hidden layers with 316
neurons; and, an output layer with one neuron, consider-
ing we face a binary classification problem. As activation
function we used a Sigmoidal function, which allowed us
to approximate the continuous function to a probability of
the expected class.



4. RESULTS AND DISCUSSION

For training the models, and after preprocessing we se-
lected the images of 110 subjects, with an average age
of 56 years. From the 110 dataset, around 50% of the
participants were women. Table 4 summarizes the char-
acteristics of the subjects included in this research. In
order to maintain a balance separation between training
and testing groups, gender and the presence of diabetes
features were used for fragmenting the dataset, obtaining
a training group of 69 subjects and a testing group of 41
subjects.

Table 4. Participants Characteristics

Factor

Number of subjects 110

Mean age 56.06

Number of female 51

Number of diabetic subjects 96

Number of healthy subjects 41

We used the co-variance matrix to determine and select
the best candidate features, considering a correlation with
the expected output label. Table 5 presents the selected
categories with the highest variances among the features
selected, which allowed us to discriminate the patterns
observed in the segments extracted from the MRI images.

Table 5. Co-variance Matrix Results

Diabetes

mean 0.17

atan mean 0.17

cos mean 0.17

zero-crossing -0.21

mean volume 0.15

count of lesions -0.45

After training and testing the models the accuracy score
was calculated; Table 6 shows the results of the accuracy
reached by each model, this score was used to compare the
prediction performance of each model described in section
3, and as shown in the table, the LR model performed
better than the other models, with an accuracy of 88.8%,
sensitivity of 100% and specificity of 84%. Out of the 4
models, Random Forest has the lowest performance score
with an accuracy of 79%. The selected characteristics or
features used were: The image mean values, the mean value
obtained after applying the inverse tangent function, the
mean value obtained after applying the cosine function, the
zero-crossing based edge mean value, the average lesion
volume, and the number of lesions; these set of features
showed a consistent result in predicting the presence of
the disease patterns, that is if a subject is diabetic or not.
The other classification models, SVM and the MLP Neural
Network showed an average predictive performance, with
an accuracy range between 0.818 and 0.848.

Table 6. Models Evaluation

Model Accuracy

Logistic Regression 0.880

Support Vector Machine 0.848

Random Forest 0.790

MLP Neural Network 0.818

5. CONCLUSIONS

The Convolutional Neural Network with a U-Net architec-
ture, created for segmenting WMH, showed a good perfor-
mance after it was trained for recognizing and extracting
the WMH patterns, associated with diabetes from the
MRI Images, which later allowed us to discriminate the
patterns that are structurally different from those observed
in healthy subjects. The use of Machine Learning models
allowed us to segment the WMH, extract the significant
features of the WMH’s structural morphology that charac-
terized the diabetes lesions, and then recognize and classify
those patterns.

Four machine learning models were evaluated and com-
pared: Logistic Regression, Support Vector Machine, Ran-
dom Forest and a 4 layer Multi Layer Perceptron; experi-
mental results showed that Logistic Regression performed
better than the other 3, with a prediction accuracy of 88%
probability of belonging to the diabetic class or not. The
sensitivity of 100% showed that the model do not have
false negative predictions in the particular test dataset
used, and specificity of 84% indicates the percentage of
true negatives predictions.

The prediction consistency from all models showed that
it could be possible to differentiate small vessel diseases,
when comparing the WMH features, extracted from their
segments, from both diabetic and non-diabetic patients.

From the recognized patterns associated to the small vessel
lesions, it could be possible to train a model for recognizing
the diabetes patterns from the MRI images, and discrim-
inate between a subject diagnosed with diabetes from
those with negative diagnosis, with an average accuracy
of 83.4%.

Also, the results showed that the small vessel patterns
learned, then recognized as brain lesions related to di-
abetes, could also indicate a long-term deterioration in
medical areas that were not previously used to detect this
disease.
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