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Abstract: Many of the patients diagnosed with Parkinson’s disease (PD) do not know they
have it until the most severe symptoms appear, sometimes they must wait months or even years
to get the correct diagnosis, so detection in its early stage is important to improve the quality of
life of patients and families. We propose the creation of a model based on supervised learning,
to learn the patterns associated with the voice of PD patients. We used 1400 voice recordings of
PD patients and controls which were preprocessed, further were obtained 70 features for each
recording, and then we used a supervised learning algorithms such as a Multilayer Perceptron
(MLP), Random Forest (RF), Logistic Regression (LR), and Support Vector Machines (SVM)
to classify the data between patients and controls. From all machine learning models evaluated
the SVM model showed the best performance, with an accuracy of 88%. This work presents the
possibility to incorporate the voice analysis as digital biomarker to facilitate diagnosis in PD.
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1. INTRODUCTION

The Parkinson disease (PD) is a neurodegenerative disor-
der that affects predominantly dopamine-producing neu-
rons located in the substantia nigra of the brain. Accord-
ing to WHO 1 , about 5.4 million people worldwide were
diagnosed with PD in 2013 and its cause still is not well
understood. For diagnosing PD, clinical observations of
cardinal signs of motor deterioration is done, such as dis-
tal resting, tremors, rigidity, bradykinesia in asymetrical
onset and others. Physical examination includes postural
instability, facial expression, micrographia and decreased
olfaction; there is also a psychological evaluation. However,
it is clear that in pre-clinical stages, 4 to 6 years before
the diagnosis, PD is preceded by a prodromal stage that
predates clinical diagnosis, and there are not established
methods for detecting this stage. Despite advances in
imaging analysis and radiologic testing, PD diagnosis at
the early stages of the disease remains complex and in
most cases a non-accurate task.

There have been some efforts to developed methods to di-
agnose the PD at an early or prodromal stage; such as the
study performed by Rolheiser et al. (2011), which is based
on diffusion tensor imaging of the olfactory tract combined
with behavioral olfaction, as a biomarker to identify early
PD, others focused in identify differences in white mat-
ter hyperintensities features Chancay et al. (2015); Viteri
et al. (2021). Several studies have also described the effects
of the disease on speech impairment; Ho et al. (1998),
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found that voice was the leading deficit, as compared
to other effects in initial stages, and recent research is
focusing on analyzing the speech impairment identified in
PD patients. According to New et al. (2015), one of the
first PD symptoms identified is the change in speech, as
well as a language impairment. It has been estimated that
more than 90% of PD patients and Parkinsonism, present
high degree of speech disorders; such as, articulation
(dysarthria), spoken language production (dysprosody) or
voice (dysphonia), as reported by Sapir (2014); Mostafa
et al. (2019) and Lirani-Silva et al. (2015). These speech
disorders have led to the proposal of telemedicine systems,
which are helping in the early detection of the disease as
stated by Tsanas et al. (2009) and Peker et al. (2015),
which use simple and low cost methods and technologies
to support physical examinations and the workload of
physicians. Recent work has been focused on exploring
speech distortions, through the audio analysis, using pro-
tocols that allow to identify specific changes in speech
of PD patients, as it has been proposed by J. Holmes
et al. (2000), who defined a protocol for recording the
patient’s audios, e.g. asking a patient to speak and hold the
vowel ’aaaa’ for about 10 seconds, and their subsequent
analysis. Over time these types of protocols were replicated
in other studies, as in Tsanas et al. (2012); Sakar and
Kursun (2010) and Arora et al. (2018) in the differentiation
between genetic and idiopathic Parkinson’s disease, using
Artificial Intelligence (AI) techniques for classifying speech
signals.



In this work, we propose a methodology for preprocess-
ing voice recordings, then identifying and extracting the
relevant features related to the PD patterns within those
signals, then we have evaluated 4 Machine Learning (ML)
models to carry out a binary classification, which allowed
us to classify the PD or not PD based on the voice analysis,
these models are: Random Forest (RF), Support Vector
Machines (SVM), Logistic Regression (LR), and a Multi-
layer Perceptron (MLP). Furthermore, we have compared
their performance in classifying the patterns, as PD or not
PD with a given probability.

2. THE DATASET AND METHODOLOGY

The dataset used in this work comes from the Sage
Bionetworks mPower Project, called ”Mobile Parkinson
Disease Study”, Bot et al. (2016), This dataset contains
a collection of more than 65000 audios, which have been
recorded using smart phones. The audios have the voice
recordings of the vowel ’aaaa’, with a duration of 10
seconds, sampled at a frequency of 44.1 kHz. and have
been saved in ".m4a" format. However, most of them are
replications from the same subject or noise contaminated
samples. Also, for the purpose of this work, a set of voice
recordings from a control group of subjects was included.
Therefore, the criteria used for filtering the audio files is
described in Table 1:

Table 1. Selection criteria for selection of audio
files

Patients

Who did the recording prior to taking Parkinson’s medication.
Have a positive PD diagnosis from a professional.
Consume any medication for PD.
Range in age is from 50 to 75 years old.

Control group

Defined as healthy controls
Age range from 50 to 75 years old.

Using this filter selection criteria, we found 1201 recording
audios from healthy controls, and 6405 audios of people
with positive PD.

For preprocessing the signals, as well as for training
the models, we used: Python ver. 3.0, and for feature
extraction from the preprocessed audio set, we used the
following libraries: Librosa and Parselmouth available for
Python. Additionally, for model implementing we used
Google Colab 2 , which provided us with 12 Gb of RAM
and access to GPUs for free.

2.1 Audio preprocessing

Since the voice data was captured using smart phones, the
recording environment was not controlled, affecting the
audio’s quality. Therefore, the cleaning of the background
noise was performed in the preprocessing phase; noise,
such as sounds coming from TV sets, animals, cars, people
talking, among others; cleaning included intensity audio
volume normalization.

According to Rueda and Krishnan (2018), audio signal
alterations will be present depending on the recording
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decibel’s level. If the signal has a value greater than 0
decibels (the saturation point), or less than -30 decibels,
then some important features could be lost. Therefore, it is
advisable to use audio signals within the frequency range
[-20db to -3db]. Additionally, consider the time window
selection where the signal is stable. In this work, after
performing a time window analysis we found that, in
average after the first second, there was about 3 seconds
stability of the voice across all subjects.

In order to increase the number of healthy control samples,
36 new local recordings were acquired from 16 men and 20
women, which were analyzed using the same protocol as
the mPower Project, as well as the same audio recording
format.

After applying this criteria, 1400 qualified audios were
selected, 700 samples corresponded to PD patients and
the remaining 700, to healthy controls.

Table 2 shows a summary of the audio files belonging to
each genre and the PD status.

Table 2. Summary of the final Dataset

Parkinson’s dis-
ease

Genre Age Quantity Total

Parkinson’s disease
Male 56 - 71 442

700
Female 56 - 71 258

Healthy controls
Male 50 - 74 474

700
Female 50 - 74 226

2.2 Feature extraction

As recommended by J. Holmes et al. (2000), and once
the audio signals have been preprocessed, we extracted 70
features as described in the Table 3, which allowed us to
determine: The shimmer, jitter, maximum pitch, minimum
pitch, minimum tone, harmonics-to-noise ratio (HNR),
which calculates the amount of noise in the speech signal,
number of pulses, and the fundamental frequency. Also, to
analyze healthy voice signals and dysphonia, MFCCs (Mel
Frequency Cepstral Coefficients) were extracted, which
are the features used in speech recognition and allow to
model the spectral energy distribution of a signal, based
on a linear cosine transform of a log power spectrum on a
nonlinear Mel scale frequency Majeed et al. (2015); using
these functions, the following features were extracted: The
MFCC, a delta MFCC and their means and standard de-
viations, as recommended by Rueda and Krishnan (2018).
Table 3, shows the list of these features. Notice that row
71 was added, which contains the label (PD or HCs).

2.3 Dimensionality reduction

To simplify the number of features, as well as to reduce the
possibilities of overfitting, and the model’s training costs,
two techniques were applied: a High Correlation Filter
(HCF); which allowed us the determine the best correla-
tions between the features and the expected output label;
and, Principal Component Analysis (PCA), to determine
those features that contribute with the most information
from the preprocessed dataset.

High Correlation Filter - HCF. The HCF allowed
us to find the correlation of each and all features, as



Table 3. List of features

Id Features Description

1 HNR Harmonic-to-noise

2 apq11Shimmer Shimmer (apq11)

3 apq3Shimmer Shimmer(apq3)

4 apq5Shimmer Shimmer (apq5)

5 ddaShimmer Shimmer (dda)

6 ddpJitter Jitter (ddp)

7-19 desvMFCC 13 MFCC - Standard
Deviation

20-32 desvMFCCdelta 13 delta MFCC - Stan-
dard Deviation

33 localJitter Jitter (local)

34 localShimmer Shimmer(local)

35 localabsoluteJitter Jitter (local, absolute)

36 localdbShimmer Shimmer (localdb)

37 max pitch Maximum pitch

38 meanF0Hz F0 - Mean

39-51 meanMFCC 13 MFCC - Mean

52-64 meanMFCCdelta 13 delta MFCC - Mean

65 min pitch Minimum pitch

66 n periods Number of periods

67 n pulses Number of pulses

68 ppq5Jitter Jitter (ppq)

69 rapJitter Jitter (rap)

70 stdevF0Hz F0 - Standard Devia-
tion

71 Status Label (PD or HCs)

compared in pairs to the expected output label, and
estimated by (1):

r =
(XY )√

(XX)(Y Y )
(1)

Where X, the input feature matrix, explains the total
variability with respect to the output vector Y. The
correlation value r can be positive or negative in the
range [-1, 0, +1]; where zero indicates the absence of a
relationship; closer to 1, regardless of the sign, shows a
strong association between X and Y.

Fig. 1. Heat Map showing the total variability of each
feature with respect to the output

To visualize the strength of these associations a Heat Map
was created, as it can be seen in Figure 1, the brighter the
color the stronger the positive correlation, and the darker
the color, the stronger the negative correlation).

Principal Component Analysis - PCA. Through
this technique, a matrix of Principal Components (PCs)
was generated, from the set of selected features extracted
from the Co-variance matrix and generated by (2); these
PCs are linear combinations of the features or independent
variables; as a result, the PC with the highest variance is
the first component, the second with the highest variance
is the second component, and so forth, as defined in
Maćkiewicz and Ratajczak (1993).

Cov(AiX,AjX) = 0 for i 6= j (2)

Where X is a matrix, with columns representing the fea-
tures’ vectors of the signals, and labeled as X1, X2, ....Xp;
each column vector represents a point in p−dimensions, as
expressed in (3). A contains the orthonormal eigen-vectors
of the variance-covariance matrix, derived from X.

X =

x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·
xp1

xp2
· · · xpn

 (3)

The selection of PCs is based on the number of components
that maximizes the percentage of variance, in this case
we have selected the first 27 PCs, which preserve around
97% of the information. Figure 2 shows the corresponding
percentage of variance for each of the 27 PCs.

Fig. 2. Percentage of variance for the 27 Principal Com-
ponents

2.4 Description of hyper-parameters

Multilayer Perceptron - MLP. After evaluating sev-
eral configurations and models, an MLP architecture with
4 layers was designed. The input layer has 27 neurons,
based on the number of input features; 2 hidden layers with
128 and 64 of neurons respectively; and, since this is a bi-
nary classification problem, the output layer has 1 neuron.



The activation function defined for the hidden layers was
tanh mainly because, as it was seen before, the features
extracted are in the [-1, +1] range; at the output layer the
Sigmoid function was used since it is a binary classification
problem. The function binary-crossentropy was chosen
to evaluate the loss during the learning process.

For implementing the neural network we used the Scikit-
learn and Keras libraries available in Python, and the
optimizer selected for this model was Adam. Searching
for the best parameters was performed using Stochastic
Gradient Descent (SGD) and for updating the parame-
ters we used Back-propagation during 42 epochs; that is,
until we reached the maximum accuracy and the lowest
loss. With this model an accuracy of 86% was achieved,
using the PCA as a dimensional reduction method and
applying a fine tuning technique, the following hyper-
parameter configuration was obtained. (see Table 4)

Table 4. MLP configuration

Parameters Value

Learning rate 0.1

momentum 0.8

kernel initializer he normal

Dropout1 0.5

Dropout2 0.0

Dropout3 0.1

neurons1 128

neurons2 256

neurons3 64

neurons4 1

validation split 0.2

epochs 100

batch size 40

Support Vector Machine (SVM). The SVM is an
algorithm widely used in classification, which is based on
statistical learning theory. This algorithm is a discrimina-
tive classifier defined on a separation hyperplane, as pre-
sented by Vapnik (1995), the linear classification equation
is defined as follows:

f(x) = sign(

l∑
i=1

yiciK
∗(z(x), z(xi))) (4)

Where K is the weight with which the dot product of the
support vector z(x) and the input vector z(xi) is multiplied
with the combination of yi and ci. With this model an
accuracy of 88% was achieved, using the high correlation
filter method and after fine tuning, the following hyper-
parameter configuration was obtained. (see Table 5)

Table 5. SVM Configuration

Parameters Value

C 5

gamma 0.00001

kernel rbf

Using these hyper-parameters the percentage of predic-
tions for class 0, or negative PD, was 87%; and, 89% for
class 1, or positive PD. Looking at the confusion matrix
shown in Figure 3, this model predicted 18 false negatives

out of 139 audios in the test set for class 0, and 16 false
positives out of 141 audios for class 1.

Fig. 3. Confusion Matrix for the SVM model

Logistic Regression. Logistic Regression is one of the
simplest supervised autonomous learning algorithms used
for classification, it basically contains one processing unit;
it is a statistical method for predicting binary classes with
dichotomous outputs; hence, used for binary classification
problems. This algorithm is based on a Sigmoid function,
which can be designed to estimate a probability of the
expected prediction. The model is defined as follows:

f(l) : p(x) =
1

1 + e(−f(l))
(5)

Where f(l) represents a linear model, however the Sigmoid
function is applied to restrict the values in the range of
(0,1). With this model and using the high correlation
filter an 80% accuracy was achieved, after fine tuning,
the following hyper-parameter configuration was obtained.
(see Table 6).

Table 6. Logistic Regression Configurations

Parameters Value

C 100

max iter 500

penalty L2

Random Forest. A Random Forest model is a super-
vised learning algorithm that can be used for regression
and classification tasks. At start, each decision tree, as
a weak classifier, results in a binary classification, which
is subject to a series of binary tests at each node of the
tree, these are called Splits, and the more trees there
are the more robust the forest becomes, resulting in a
strong classifier. This technique is useful to convert large
problems into simple ones, finally to classify a sample, all
trees are averaged, as expressed in (6).



f =
1

B

B∑
b=1

fb(x
”) (6)

Where B is the number of random samples and fb is the
classification or the regression tree function.

A Random Forest classifier is ideal for handling a large
amount of data and multiple variables, since it identifies
subsamples to elaborate each tree, it is considered as a
dimensional reduction method, it also provides methods
for estimating missing data. With this model, an accuracy
of 82% was achieved, using the PCA method and after
fine tuning the design parameters, the following hyper-
parameter configuration was obtained, (see Table 7).

Table 7. Random Forest Configurations

Parameters Value

n estimators 50

min samples leaf 10

max features log2

Assessment metrics. To evaluate the effectiveness
of the classifiers, different metrics were computed and
evaluated: A confusion matrix for each model, such as
the one shown in Figure 3; and the accuracy, sensitiv-
ity and specificity scores. With the confusion matrix we
obtained information about the predicted and expected
classification. It allows us to visualize the hits and misses
in the prediction and through this, we were able to obtain
metrics of error, precision, sensitivity and specificity, as
represented in Table 8.

In this work the accuracy score was used to measure the
model’s prediction accuracy with respect to all instances
and is calculated as follows:

Accuracy =
TP + TN

(TP + FP + TN + FN)
(7)

Where TP , the true positives and FP , the false positives
represent the correct predictions of the model. And, TN ,
true negatives and FN , the false negatives represent the
predictions where the model was wrong. The specificity
measures the true negative rate as the ratio of the number
of true negative predictions compared to the total true
negatives and false positives, as expressed by (8)

Specificity =
TN

(FP + TN)
(8)

Table 8. Confusion matrix structure

Positive Negative

Positive TP FN

Negative FP TN

We used the Sensitivity score to measure the true positive
rate, as the ratio of the number of true positive predictions
compared to the total true positive actual values, as
expressed by (9).

Sensitivity =
TP

(TP + FN)
(9)

3. RESULTS AND DISCUSSION

Once the training, validation and evaluation of perfor-
mance scores of all models have been extracted, we found
that the SVM model obtained the best scores, either
using the High Correlation Filter (88% accuracy) or the
dimensional reduction model (87% accuracy). The results
showed that using the HCF, with the classifiers based on
the extraction of a decision border, such as the SVM, MLP
and LR performed better than the model with dimensional
reduction, with an accuracy between 80% and 87%, as
compared to the Random Forest, with an accuracy of
75%. However, using PCA the RF model improves its
prediction, with an accuracy of 82%, and at the same
time affecting the performance of the LR model, with an
accuracy of 71%.

As Table 9 shows, the performance of the MLP and
the SVM models are comparable after using the two
dimensional reduction techniques, with an accuracy above
85% in average; however, the SVM outperforms all models,
with an accuracy of 88% in average. These results were
also confirmed with the Receiver Operating Characteristic
(ROC) curves analysis. Figure 4 shows the ROC curves
for each model. These curves measure the balance between
sensitivity and specificity. From Figure 4, the classification
models that come closest to the upper part of the ”Y”
axis perform better, such models are identified as ideal
discriminators, in our case these are the SVM and MLP
classifiers. However, as we can see in this figure, the SVM
classifier performed the best. On the other hand, the
classifier that came closest to the 45-degree diagonal of
the ROC space is the Logistic Regression, which makes it
the least accurate in this evaluation.

Considering the number of features extracted from the
voice signals, and to be able to classify them as a positive
or negative class for PD, it was necessary to reduce their
dimensions. Two dimensionality reduction techniques were
evaluated, a High Correlation Filter (HCF) and Principal
Component Analysis (PCA), which allowed us to improve
the performance of the classifiers. In both cases, a decision
has to be taken as to define the threshold of the correlated
features, which allows to keep those features with strong
correlation with the expected diagnosis, such as in the
HCF technique; or, to decide the maximum variance to
be preserved, which is defined with the number of PCs to
be included in the analysis.

Table 9. Accuracy scores obtained using di-
mension reduction techniques

High Corre-
lation Filter

Principal
Component
Analysis

MLP 83% 86%

RF 75% 82%

SVM 88% 87%

LR 80% 71%

Table 9 presents a summary of the accuracy scores for each
model, after applying the two dimensional reduction tech-
niques; form this evaluation the Support Vector Machine
(SVM) model, using a High Correlation Filter, was the
model with the best performance.



Fig. 4. ROC curve of supervised learning algorithms after
using dimensionality reduction

4. CONCLUSIONS

The analysis of speech distortions, using preprocessing
techniques and Machine Learning (ML) models, for iden-
tifying specific signals in speech, allowed us to extract
relevant features related to the PD patterns of their voice
recordings in a non controlled environment. From the 4
ML models evaluated, to perform a binary classification,
the SVM model outperformed all models, with an average
accuracy of 88%. This results demonstrate that the voice
or speech analysis in a controlled environment could be
an important digital biomarker which may be helpful for
an early PD diagnosis, specially for those individuals in a
prodromal phase.
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