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Abstract: Image-based surgical phase recognition is a fundamental component for developing context-

aware systems in future operating rooms (ORs) and thus enhance patient outcomes. To date, phase 

recognition in laparoscopic videos has been investigated, and spatio-temporal deep learning-based 

approaches have been introduced. However, phase recognition in laparoscopic videos is still a challenging 

task and requires ongoing research. In this work, a spatio-temporal deep learning approach for recognising 

surgical phases is proposed. The proposed framework consists of a convolutional neural network (CNN) 

and a cascade of three long short-term memory (LSTM) networks. The first and second LSTM networks 

were trained to learn temporal information from short video clips and the complete video sequence to 

perform tool detection. The last LSTM was employed to enforce temporal constraints of surgical phases. 

The proposed approach was thoroughly evaluated on the Cholec80 dataset, and the experimental results 

demonstrate the high recognition performance of this method. 
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1. INTRODUCTION 

The accelerating development of technologies for the 

operating room (OR) environment has increased the 

complexity of the surgical workflow where increasing rates of 

information need to be processed and interpreted by the 

surgical team. Therefore, a persistent need to develop context-

aware systems (CASs) that are able to comprehensively 

analyse available data and communicate relevant information 

to human operators during surgeries has arisen (Lalys and 

Jannin 2014, Maier-Hein et al. 2017). Recognising surgical 

activities is an essential component of CASs in future ORs 

because it provides a consistent support to the medical staff 

and improves, therefore, patient safety (Lalys and Jannin 2014, 

Maier-Hein, et al. 2017, Padoy et al. 2012). In this context, 

different granularity levels for describing the surgical 

activities have been proposed in the literature under surgical 

process modelling terminology (Lalys and Jannin 2014). 

Surgical phases are the highest level and represent the main 

tasks performed during surgery. 

Indeed, automatic recognition of surgical phases as the 

surgeon is performing them is important for developing 

intelligent operating rooms that interact with the surgical team 

and promote a better awareness (Maier-Hein, et al. 2017). 

Moreover, by recognising surgical phases, the medical staff 

outside the OR is informed about the progress of the 

undergoing procedure and the schedule of the surgical 

department can be, therefore, optimised. 

Surgical phase recognition is a two-fold problem where an 

adequate data source is firstly required, and then an effective 

methodology for performing the recognition must be 

developed. Initial studies have deployed sensor-based signals 

such as surgical tool usage signals obtained using 

radiofrequency identification (RFID) tags (Neumuth and 

Meißner 2012) to carry out the recognition (Stauder et al. 

2014). For instance, Padoy et al. employed Hidden Markov 

Models (HMMs) to capture temporal information from tool 

binary usage signals (Padoy, et al. 2012). In addition, image-

based approaches that made use of intraoperative videos such 



 

as laparoscopic video have also been introduced (Abdulbaki 

Alshirbaji et al. 2020, Dergachyova et al. 2016, Jin et al. 2017, 

Jin et al. 2020, Twinanda 2017, Twinanda et al. 2016). Early 

image-based approaches focused on extracting visual features 

and then employed a classifier to determine the surgical phase 

(Dergachyova, et al. 2016). With the emergence of deep 

learning in image classification tasks, most recent approaches 

relied on utilising convolutional neural networks (CNNs) to 

learn visual features and recurrent neural networks (RNNs) to 

model temporal dependencies along the laparoscopic video 

(Abdulbaki Alshirbaji, et al. 2020, Alshirbaji et al. 2021, 

Czempiel et al. 2020, Jalal et al. 2018, Jin, et al. 2017, Jin, et 

al. 2020, Twinanda 2017, Twinanda, et al. 2016). 

Since each surgical phase is accomplished using 

corresponding surgical tools (see Fig. 1), many studies 

exploited the tool-phase relation to develop more consistent 

phase recognition approaches. Jalal et al. proposed a deep 

learning pipeline consisting of a CNN and a nonlinear 

autoregressive network with exogenous inputs (NARX) (Jalal 

et al. 2019). The CNN model was utilised to perform tool 

classification. The tool binary classifications were then 

provided to the NARX to perform phase prediction. Twinanda 

et al. introduced a multi-task model, called EndoNet, that 

jointly performs surgical phase recognition and tool presence 

detection (Twinanda, et al. 2016). To enforce temporal 

constraints, they employed a Hierarchical HMM (HHMM) to 

learn temporal information and refine the classification 

obtained by EndoNet. Additionally, Twinanda et al. replaced 

the HHMM by a long short-term memory (LSTM) network to 

overcome drawbacks imposed by the HMM and enhance 

temporal modelling (Twinanda 2017). Similarly, Jin et al. 

applied a CNN-LSTM pipeline (SV-RCNet) in an end-to-end 

manner to carry out phase recognition, and they proposed a 

prior knowledge inference scheme (Jin, et al. 2017). Jin et al. 

proposed also a multi-task framework (MTRCNet) consisting 

of a CNN and a LSTM network (Jin, et al. 2020). They also 

introduced a correlation loss to identify tool-phase relatedness. 

Czempiel et al. proposed TeCNO framework that relies on 

temporal convolutional networks (TCNs) to learn temporal 

information from pre-extracted visual features (Czempiel, et 

al. 2020). 

In this paper, a spatio-temporal deep learning approach for 

recognising surgical phases in laparoscopic videos was 

proposed. The proposed approach relied on learning fine-level 

temporal information in short video clips including unlabelled 

frames and the tool-phase relation. Initially, a CNN model 

(ResNet-50) was trained in a multi-task manner to perform tool 

detection and phase recognition, and it was utilised to extract 

visual features. Then, two LSTM models, termed as LSTM-

clip and LSTM-video, were employed (similar to (Abdulbaki 

Alshirbaji, et al. 2020)) to carry out tool presence detection. 

On top of the previous LSTM cascade, another LSTM model, 

termed as LSTM-phase, was utilised to perform phase 

recognition. Finally, the proposed approach was evaluated on 

the large dataset Cholec80. 

2. METHODOLOGY 

2.1 Architecture 

The proposed approach consists of a CNN and a cascade of 

three LSTM models. The CNN was used to extract visual 

features from laparoscopic images. The CNN features were 

passed to the first LSTM (LSTM-clip) to model temporal 

information within short video clips. The last two LSTM 

models, which are LSTM-video and LSTM-phase, capture 

temporal dependencies along the complete video. The overall 

framework is illustrated in Fig. 2. 

2.1.1 CNN 

The first stage of our approach is to encode visual information 

of laparoscopic images into a vector of features. Therefore, a 

CNN model was initially trained on laparoscopic images to 

learn discriminative features. Then, the trained model was 

used to extract features from images.    

The ResNet-50 (He et al. 2016) was fine-tuned in a multi-task 

manner to classify surgical tools and recognise surgical phases. 

The last layer of ResNet-50 was substituted by a fully-

connected layer with seven nodes, termed fc-tool, to classify 

surgical tools. Another fully-connected layer, termed fc-phase, 

was added to identify surgical phases. The outputs of fc-tool 

and the global average pooling layer form the input for fc-

phase.

Figure 1. Visualisation of surgical tool usage in each surgical phase along the surgical procedure in the Chole80 dataset. 



 

2.1.2 Cascade-LSTM 

In the second stage, a cascade of LSTM models was employed 

to incorporate the temporal information. The LSTM is an 

effective type of recurrent neural network (RNN) for 

modelling sequential data. Unlike traditional RNN, LSTM 

prevents vanishing and exploding gradients problems. Hence, 

LSTM is more able to capture long and short-term sequential 

dependencies (Hochreiter and Schmidhuber 1997). 

The cascade-LSTM consists of three LSTM models which are 

LSTM-clip, LSTM-video and LSTM-phase. Each LSTM 

model performs a single task. The LSTM-clip and LSTM- 

video classify surgical tools, whilst the LSTM-phase recognise 

surgical phases. Since both tasks are closely related, the 

learned knowledge by the first two LSTM is highly beneficial 

to surgical phase recognition in the LSTM-phase. 

2.1.2.1 LSTM-clip 

This model was engaged to leverage sequential information at 

a fine-level by incorporating a fixed number of unlabelled 

frames surrounding a labelled one. LSTM-clip has many-to-

one configuration to capture temporal relations across adjacent 

frames of a short video clip. The laparoscopic video of every 

intervention is segmented into short clips. Each video clip 

contains one tool-labelled frame and N unlabelled frames 

around it. A feature vector is extracted for every frame in the 

clip and that results in a sequence of feature vectors, as in (1). 
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where 𝑆𝑡
𝑐𝑙𝑖𝑝

 is a sequence of feature vectors for a tool-labelled 

frame 𝐹𝑡
𝐿 at time t, 𝑉𝐶𝑁𝑁 is a vector of CNN features and 

𝐹𝑈denotes unlabeled frame. 

A sequence 𝑆𝑐𝑙𝑖𝑝 is arranged for every tool-labelled frame to 

be taken by LSTM-clip as input. The output of this LSTM 

model is passed to a fully-connected layer with seven nodes 

for classifying surgical tools. During training, the LSTM-Clip 

model learns a vector of features (𝑉𝑐𝑙𝑖𝑝) which is used by 

LSTM-video model.     

2.1.2.2 LSTM-video 

This model exploits the temporal information along the 

complete video. The features of LSTM-clip for every clip in 

the video were arranged in a sequence 𝑆𝑣𝑖𝑑𝑒𝑜, as in (2). 

𝑆𝑣𝑖𝑑𝑒𝑜 = [𝑉𝑐𝑙𝑖𝑝(1), … , 𝑉𝑐𝑙𝑖𝑝(𝑡), … , 𝑉𝑐𝑙𝑖𝑝(𝑇)]        (2) 

where 𝑆𝑣𝑖𝑑𝑒𝑜 is a sequence of LSTM-clip features along a 

video of length T seconds, i.e. T tool-labelled frames. This 

sequence forms the input for the LSTM-video. A fully-

connected layer was added atop the LSTM model to perform 

Figure 2. The proposed framework for surgical phase recognition. (a) Overview of the full pipeline for detecting surgical 

tools, (b) the LSTM-phase model. Red and grey rectangles indicate labelled and unlabeled frames, respectively. V vectors 

represents visual features obtained using the CNN model. 



tool classification. The configuration of LSTM-video is many-

to-many, thus it gives a vector of features 𝑉𝑣𝑖𝑑𝑒𝑜  for every tool-

labelled frame in the video. The features obtained using the 

LSTM-video were then passed to the LSTM-phase. 

2.1.2.3 LSTM-phase 

The LSTM-phase profits from the accumulated knowledge 

through the prior models to identify the surgical phases. 

Similar to the preceding model, LSTM-phase models the 

temporal dependencies along the entire laparoscopic video. It 

utilises the features extracted from LSTM-video as input. 

Equation (3) shows a sequence of LSTM-video features 𝑆𝑝ℎ𝑎𝑠𝑒 

for a video of length T seconds. To perform the phase 

recognition task, the output of this LSTM model was 

connected to a fully-connected layer.  

𝑆𝑝ℎ𝑎𝑠𝑒 = [𝑉𝑣𝑖𝑑𝑒𝑜(1), … , 𝑉𝑣𝑖𝑑𝑒𝑜(𝑡), … , 𝑉𝑣𝑖𝑑𝑒𝑜(𝑇)]        (3) 

2.2 Experimental Setup 

2.2.1 Dataset 

The dataset used in this work is the Cholec80 (Twinanda, et al. 

2016). Cholec80 dataset was collected at the University 

Hospital of Strasbourg. It contains laparoscopic videos for 80 

cholecystectomy procedures. The videos were recorded at a 

frame rate of 25 frames per second (fps). The resolution of the 

videos is either 854×480 or 1920×1080. Frames were resized 

into 224×224×3 since the CNN model accepts this input size. 

The dataset was manually labelled for surgical phases at 25 fps 

and for surgical tools at 1 fps. The defined surgical phases and 

used tools are presented in Fig. 1. The first 40 videos of 

cholec80 were used for training. The remaining videos were 

kept to enable evaluation of the performance of each model in 

our framework.   

2.2.2 Training process 

Each model was trained separately. The training parameters 

for each model are presented in Table 1. The CNN model was 

initialised with weights learned from training on ImageNet 

(Deng et al. 2009). The CNN training started at a learning rate 

of 10-4, except the fully-connected layers on top of the model 

had a higher rate of 20×10-4. The LSTM-clip was trained using 

20 unlabelled frames around every tool-labelled one. The 

LSTM-video and LSTM-phase were trained every training 

iteration with one 𝑆𝑣𝑖𝑑𝑒𝑜and one 𝑆𝑝ℎ𝑎𝑠𝑒, respectively. 

Accordingly, applying zero-padding on sequences of different 

lengths, that is required when multiple sequences are 

processed per batch, was avoided. 

Sigmoid and softmax activation functions were used for tool 

classification and phase recognition, respectively. The loss 

was computed for tool classification task using binary cross-

entropy function, and for phase recognition using softmax 

multinomial logistic loss function. An Adam optimiser was 

employed to minimise the loss. The implementation was 

carried out in Keras using NVIDIA GeForce RTX 2080 TI 

GPUs. 

Table 1. Training parameters for all models 

Model CNN LSTM-

clip 

LSTM-

video 

LSTM-

phase 

Batch 

size 

50 images 50 𝑆𝑐𝑙𝑖𝑝 1 𝑆𝑣𝑖𝑑𝑒𝑜 1 𝑆𝑝ℎ𝑎𝑠𝑒 

Epochs 10 30 30 20 

Initial 

learning 

rate 

20×10-3 10-4 10-4 10-4 

Weight 

decay 

9×10-4 10-3 10-3 10-3 

Memory 

cells 

- 512 4096 4096 

 

3. RESULTS 

The accuracy, precision (PR) and recall (RE) were utilised to 

evaluate the performance of the of the proposed framework. 

The PR and RE were first calculated for each phase and the 

mean PR and mean RE were then calculated. The accuracy was 

calculated for the entire data. A comprehensive analysis about 

the improvement achieved using the proposed framework over 

the ResNet-50 model are presented in Table 2. The predictions 

of all phases enhanced using the proposed approach. 

Furthermore, to highlight the ability of the proposed 

framework to refine intra- and inter-phase predictions, the 

confusion matrices are further visualised in Fig. 4. 

Table 3 presents comparison results of phase recognition with 

the reference methods. To achieve consistency with prior 

papers, the same data split was used to evaluate the proposed 

approach. 

Table 2. Precision and recall of phase recognition results for all 

phases using the proposed framework. 

Phase 

Precision Recall 

ResNet-

50 

Our 

approach 

ResNet-

50 

Our 

approach 

P1 71.8 97.8 54.3 80.6 

P2 84.0 97.9 85.1 98.3 

P3 73.7 89.8 69.7 82.2 

P4 85.4 92.7 84.7 98.8 

P5 62.5 87.8 79 82.2 

P6 68.7 92.5 71.2 66.9 

P7 58.2 72.6 58.4 86.3 

Mean 72.0 90.1 71.8 85.1 

 



Table 3. Baseline comparisons with other methods. Bold values 

indicate best performance. 

Method Accuracy Precision Recall 

PhaseNet 78.8 71.3 76.6 

EndoNet + 

HHMM 

81.7 73.7 79.6 

EndoNet + LSTM 88.6 84.4 84.7 

SV-RCNet 85.3 80.7 83.5 

MTRCNet-CL 89.2 86.9 88.0 

TeCNO 88.6 86.5 87.6 

Our approach 92.9 90.1 85.1 

 

 

4. DISCUSSION 

This work presents a deep learning framework for recognising 

surgical phases in cholecystectomy videos. The proposed 

approach consists of two main stages. Initially, a CNN model 

followed by a cascade of two LSTM networks were trained to 

perform tool presence detection. Then, spatiotemporal features 

extracted using the aforementioned approach were provided 

into a LSTM to perform phase recognition. 

The proposed framework achieved mean precision and mean 

recall of 89.0% and 84.5%, respectively. These values 

improved on the established ResNet-50 model mean precision 

and mean recall values of 72.0% and 71.8%, respectively 

(Table 2). The LSTM-clip and LSTM-video approaches 

contributed effectively to extract more discriminative 

spatiotemporal features not only for detecting surgical tools 

but also for recognising surgical phases. Additionally, using 

the LSTM-phase on top of the LSTM-video to enforce 

transitions between surgical phases achieved notable 

improvement of all phases (see Table 2). 

Fig. 1 shows the tool-phase relation in a laparoscopic 

procedure of the Cholec80 dataset. The surgical tool usage 

signals are not only discriminative for intra-phases (i.e. within 

the surgical phase) but also for inter-phases (i.e. transitions 

between phases). Therefore, the proposed approach relied on 

employing the ResNet, LSTM-clip and LSTM-video cascade 

to extract input features for the LSTM-phase. In this context, 

the recognition results are highly correlated to the tool 

detection results and can be interpreted accordingly. 

The best recognition results were obtained for P2 (calot 

triangle dissection) and P4 (gallbladder dissection) (see Table 

2). Indeed, these two phases were accomplished using the 

grasper and hook tools (see Fig. 3). The sensitivity of the 

grasper and the hook were 96.8% and 97.4%, respectively. 

Consequently, the proposed framework achieved sensitivity of 

98.3% and 98.8% for P2 and P4, respectively. In contrast, the 

recognition results for P3 (clipping and cutting) were much 

lower. The sensitivity of the scissors and the clipper, that were 

utilised to perform this phase, were 73.4% and 95.1%, 

respectively. Moreover, the scissors usually appear at the 

middle and end of P3. Therefore, some frames belonging to 

the third phase were misclassified as P4 (see Fig. 4). 

The recognition results of the last three phases, especially P6, 

are significantly lower than the results of P2 and P4, which is 

due to the non-linear transition between these three phases. 

Moreover, the specimen bag, that typically appears in P5 and 

P7, appeared in P6. 

Table 3 shows the reference methods and their corresponding 

recognition precision and recall. Like this work, MTRCNet-

CL, EndoNetLSTM and SV-RCNet utilised LSTM for 

temporal refinement. In MTRCNet-CL and EndoNetLSTM, 

the CNN model was trained similar to this study to perform 

both tool detection and phase recognition tasks. Moreover, 

MTRCNet-CL was trained in end-to-end fashion, so the visual 

and temporal features are jointly learned. However, the 

MTRCNet-CL was trained using short video sequences in the 

patch because of hardware constraints. In contrast, the LSTM 

networks used in the proposed framework were trained using 

complete video sequences, where the input features of each 

network were extracted prior to the training process. While 

MTRCNet-CL reported an average recall of 88.0% (which 

exceeds the average recall of 85.1% obtained using the 

presented framework) the average accuracy and average 

precision achieved in this study are higher (Table 3). A more 

recent study Czempiel et al. proposed using a multi-stage TCN 

(TeCNO) to temporally refine phase predictions, and they 

reported an average precision and average recall of 86.5% and 

87.6%, respectively. In general, the proposed approach 

achieved comparable average recall compared to the reference 

methods, and better average precision and accuracy. However, 

more detailed comparison of the precison and recall of each 

phase was not possible since the results of each phase were not 

reported in most of the published papers. 

Figure 3. Tool presence detection results using LSTM-

video. Note the truncated scale of the y-axis  

Figure 4. Confusion matrices for (a) the ResNet-50 model and 

(b) the proposed approach.  



Despite the high phase recognition performance achieved by 

the proposed framework, the study has limitations. The 

presented approach was evaluated using singular data split for 

training and testing. Therefore, cross-validation experiments 

should be carried out to ensure that the high performance 

achieved in this study was not uniquely optimised to the 

specific training and testing data described. Furthermore, the 

proposed framework was only evaluated on the Cholec80 

dataset where only seven phases and seven tools are defined. 

Therefore, the proposed method should be evaluated on other 

datasets of the same surgery type and on other complex 

surgeries such as sigmoid resection where more surgical 

phases can be defined. 

5. CONCLUSIONS 

This study proposed a deep learning framework to recognise 

surgical phases in laparoscopic videos. The proposed approach 

depends on initially extracting spatiotemporal features using a 

cascade of a CNN and two LSTM networks that was trained 

mainly to perform tool presence detection. The extracted 

features are then provided into a LSTM model to perform 

phase recognition. Experimental results of this approach 

showed strong phase recognition performance indicating the 

promising potential to integrate this approach into smart 

systems in the operating theatre. Future work includes 

enhancing this method for inter-phase recognition 

performance especially for the last few phases. 
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