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Abstract: Mechanical ventilation (MV) is used in the intensive care unit (ICU) to treat patients with 

respiratory failure. However, MV settings are not standardized due to significant inter- and intra- patient 

variability in response to care, leading to variability in care, outcome, and cost. There is thus a need to 

personalize MV. This research extends a single compartment lung mechanics model with physiologically 

relevant basis functions, to identify patient-specific lung mechanics and predict response to changes in MV 

care. The nonlinear evolution of pulmonary elastance as positive-end-expiratory pressure (PEEP) changes 

is captured by a physiologically relevant, simplified compensatory equation as a function of PEEP and 

pressure identification error at the baseline PEEP level. It allows both patient-specific and general 

prediction of lung elastance of higher PEEP. The prediction outcome is validated with data from two 

volume-controlled ventilation (VCV) trials and one pressure-controlled ventilation (PCV) trial, where the 

biggest PEEP prediction interval is a clinically unrealistic 20cmH2O, comprising 210 prediction cases over 

36 patients (22 VCV; 14 PCV). Predicted absolute peak inspiratory pressure (PIP) errors are within 

1.0cmH2O and 3.3cmH2O for 90% cases in the two VCV trials, while predicted peak inspiratory tidal 

volume (PIV) errors are within 0.073L for 85% cases in studied PCV trial. The model presented provides 

a highly accurate, predictive virtual patient model across multiple MV modes and delivery methods, and 

over clinically unrealistically large changes. Low computational cost, and fast, easy parameterization 

enable model-based, predictive decision support in real-time to safely personalize and optimize MV care. 

Keywords: Mechanical ventilation; PEEP; Respiratory mechanics; Elastance; Prediction; VILI; Basis 

function; System identification; Virtual patient. 

1. INTRODUCTION 

Mechanical ventilation (MV) is the core treatment for patients 

suffering life-threatening respiratory failure in the intensive 

care unit (ICU). The primary goal to enable recovery is to 

minimise work of breathing, ensure adequate gas exchange, 

and recruit and hold open lung volume. However, suboptimal 

MV settings can lead to over-distension and ventilator induced 

lung injury (VILI), which increase morbidity and mortality 

(Major et al., 2018). To avoid these harmful effects, protective 

MV settings have been proposed (Amini et al., 2017).  

Recruitment maneuvers optimising positive-end-expiratory 

pressure (PEEP) are a clinically effective lung protective MV 

strategy, and effective in improving oxygenation and 

minimising harm. However, the optimal PEEP setting itself 

remains patient-specific, time-varying, and thus not 

standardized (Amato et al., 2015). Hence, it is critical to enable 

clinicians to monitor and forecast patient-specific pulmonary 

response for new PEEP settings, to improve personalize care 

and minimize risk. Therefore, accurate, predictive and patient-

specific MV strategies are a major need in advancing care and 

minimising MV-associated injury (Chase et al., 2018).  

The two main MV modes are volume-controlled ventilation 

(VCV) and pressure-controlled ventilation (PCV). VCV 

allows clinicians to control tidal volume, eliminating 

volutrauma, the resulting peak inspiratory pressure (PIP) can 

cause barotrauma. Conversely, PCV controls the delivered 

airway pressure, but risks volutrauma from too large a peak 



inspiratory volume (PIV). Thus, both may lead to unexpected 

VILI (Garnero et al., 2013). To date, no noticeable clinical 

outcome differences have been seen comparing VCV and PCV 

(Rittayamai et al., 2015). Thus, the decision on MV strategy 

relies on clinician preference, patient characteristics, or patient 

comfort. Hence, accurate, model-based, and patient-specific 

pulmonary response prediction is necessary for both VCV and 

PCV to improve patient care and outcomes.  

Complex models can capture a large range of dynamics (Chase 

et al., 2018, Tawhai et al., 2011), but may suffer poor or non-

identifiability (Chase et al., 2018, Docherty et al., 2011, 

Schranz et al., 2012) limiting bedside use. Simpler black box 

models can require large amounts of data to train and can lack 

the ability to capture or describe all physiological features 

(Langdon et al., 2017, Sun et al., 2020), where physiological 

relevance is important because it supports clinical confidence 

and use (Chase et al., 2016). Finally, some models capture lung 

mechanics well, with good personalization of parameters, but 

can be poor in predicting the response to changes in care, 

meaning they do not generalize well enough. Thus, relevant 

deterministic mechanics are advantageous (Chase et al., 2018). 

This research presents physiologically relevant, simpler basis 

functions to estimate elastance and resistance using the well 

validated single compartment lung mechanics model (Bates, 

2009). A compensatory equation captures nonlinear evolution 

of elastance over PEEP, where there is currently no effective 

way to use it to predict elastance changes with PEEP (Chiew 

et al., 2011). Using MV data at one single PEEP level, 

pulmonary mechanics response (PIP/PIV) can be predicted 

over PEEP increases up to a clinically unrealistic 20cmH2O for 

both VCV and PCV. The goal is to quantify the trade-off 

between increasing basis function simplicity and improving 

clinical utility via predictive accuracy. 

2. METHODS 

2.1 Model Definition 

The proposed method is based on a well-validated single 

compartment lung mechanics model (Bates, 2009): 

𝑃(𝑡) = 𝐸 ∗ 𝑉(𝑡) + 𝑅 ∗ 𝑄(𝑡) + 𝑃𝐸𝐸𝑃 (1) 

where P(t) is airway pressure (cmH2O), V(t) is the tidal volume 

delivered (L), Q(t) is the flow (L/s), and PEEP is the positive 

end-expiratory pressure (cmH2O). Pulmonary elastance 

(cmH2O/L) and pulmonary resistance (cmH2O*s/L) are 

defined as E and R, respectively. 

Identification: At baseline PEEP (𝑖 = 1), pressure and flow 

data are used to identify patient-specific elastance and 

resistance using basis functions defined: 

𝐸𝑖(𝑡) = 𝑒1 + 𝑒2 ∗ 𝑃𝑖(𝑡), 𝑖 = 1 (2) 

𝑅𝑖(𝑡) = 𝑟1 + 𝑟2 ∗ 𝑄𝑖(𝑡), 𝑖 = 1 (3) 

where 𝐸𝑖  and 𝑅𝑖  ( 𝑖 = 1) are the identified elastance and 

resistance by 𝑃𝑖(𝑡) and 𝑄𝑖(𝑡) (𝑖 = 1), the measured pressure 

and flow data. The values of 𝑒1, 𝑒2, 𝑟1, and 𝑟2 are the constant 

coefficients to be identified. The elastance basis function is 

significantly simplified from the one used in (Morton et al., 

2018, Morton et al., 2019a), which defines 𝐸 = 𝑓(𝑃(𝑡), 𝑉(𝑡)). 

After identification, the PIP fitting error, 𝛼, can be calculated: 

𝛼 =
𝑓𝑖𝑡𝑡𝑒𝑑 𝑃𝐼𝑃 − 𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑃𝐼𝑃

𝑐𝑙𝑖𝑛𝑖𝑐𝑎𝑙 𝑃𝐼𝑃
(4) 

Thus, in this step, 𝑒1, 𝑒2, 𝑟1, and 𝑟2 are identified and remain 

constant, while the resulting 𝐸𝑖 and 𝑅𝑖 at 𝑖 = 1, and 𝛼 can be 

identified/calculated. 

𝑬𝒊(𝒕)  and 𝑹𝒊(𝒕)  prediction: For prediction ( 𝑖 > 1 ), a 

compensatory coefficient, 𝛷𝑖 , captures elastance evolution 

over PEEP. For 𝑃𝐸𝐸𝑃𝑖  levels (𝑖 > 1), 𝛷𝑖 is defined: 

𝛷𝑖 = {
(1 + 𝛼)−1 , 𝑖 = 2

𝜗1 ∗ ∆𝑃𝐸𝐸𝑃 , 𝑖 > 2
(5) 

Specifically, for 𝑖 > 2 and 𝑃𝐸𝐸𝑃𝑖  > 24cmH2O, 𝛷𝑖  is defined 

with a clinically selected 𝑃𝐸𝐸𝑃𝑚𝑎𝑥  = 24cmH2O: 

𝛷𝑖 = 𝜗1 ∗ ∆𝑃𝐸𝐸𝑃 − 𝜗2 ∗ (𝑃𝐸𝐸𝑃𝑖 −
𝑃𝐸𝐸𝑃𝑚𝑎𝑥

∆𝑃𝐸𝐸𝑃
)

2

(6) 

where 𝜗1 = 0.0174 in the CURE trial and = 0.0087 in both the 

McREM and Maastricht trials, and 𝜗2 = |𝛼| – 0.0123 for all 

trials. ∆𝑃𝐸𝐸𝑃 = 𝑃𝐸𝐸𝑃𝑖 − 𝑃𝐸𝐸𝑃𝑖−1 , where 𝑃𝐸𝐸𝑃𝑖  is the 

currently applied PEEP level. The values for 𝜗1 and 𝜗2 were 

optimized parametrically by line search. In the CURE trial, the 

PEEP step is 4cmH2O, and is 2cmH2O in McREM and 

Maastricht. Thus, 𝜗1 is reasonably decreased to half the value 

used for the CURE trial (𝜗1 = 0.0174→0.0087), while 𝜗2 and 

𝑃𝐸𝐸𝑃𝑚𝑎𝑥  remain the same. Hence, the parameters are general 

over all three trials and two MV modes. 

Elastance is predicted for 𝑃𝐸𝐸𝑃𝑖 levels (𝑖 = 2, 3, 4, …) using: 

𝐸𝑖(𝑡) = 𝑒1 ∗ ∑ 𝛷𝑗 + 𝑒2 ∗

𝑗=𝑖

𝑗=2

𝑃1(𝑡) ∗ ∑ 𝛷𝑗

𝑗=2

𝑗=2

∗ … ∗ ∑ 𝛷𝑗

𝑗=𝑖

𝑗=2

(7)  

Resistance is assumed constant over all PEEP levels for each 

patient, as identified at baseline 𝑃𝐸𝐸𝑃1, using: 

𝑅𝑖(𝑡) = 𝑅1(𝑡) = 𝑟1 + 𝑟2 ∗ 𝑄1(𝑡) (8) 

Pressure and volume prediction: With predicted 𝐸𝑖(𝑡) 

and 𝑅𝑖(𝑡), for VCV patients, airway pressure is predicted as 

the independent output variable from baseline PEEP to 

𝑃𝐸𝐸𝑃𝑖  (𝑖 > 1): 

𝑃𝑖(𝑡) = 𝐸𝑖(𝑡) ∗ 𝑉1(𝑡) + 𝑅𝑖(𝑡) ∗ 𝑄1(𝑡) + 𝑃𝐸𝐸𝑃𝑖 (9) 

For PCV patients, since pressure is the known input instead of 

tidal volume and flow, tidal volume is predicted using: 

𝑉𝑖(𝑡) =
𝑃1(𝑡) − 𝑃𝐸𝐸𝑃1 − 𝑅𝑖(𝑡) ∗ 𝑄1(𝑡)

𝐸𝑖(𝑡)
(10) 

2.2 Sensitivity analysis 

Equation (5) relies on fixed, constant values for 𝜗1, 𝜗2, and 

𝑃𝐸𝐸𝑃𝑚𝑎𝑥 . While 𝑃𝐸𝐸𝑃𝑚𝑎𝑥  is clinically justified, the 𝜗1  and 

𝜗2  values are tested across hybrid changes of ±5%, ±10%, 



and ±15% in a sensitivity analysis to quantify robustness in 

addition to the three independent data sets used in validation, 

yielding a total of 48 combinations of 𝜗1 and 𝜗2 analysed. 

2.3 Patient data 

Pressure and flow data from 36 mechanically ventilated ICU 

patients (4 from the CURE pilot trial (Chiew et al., 2015), 18 

from the McREM pilot trial (Stahl et al., 2006), and 14 from 

the Maastricht pilot trial) were used to validate the method 

developed in this study. For consistency, the baseline PEEP 

level is 10cmH2O for all 3 trials. Demographics are presented 

for VCV patients in Table 1 and for PCV patients in Table 2. 

Table 1 - Patients and clinical trial demographics for VCV 

patients in CURE (N=4) and in McREM (N=18). TBI = 

Traumatic Brain Injury, SDH = Subarachnoid Hemorrhage, 

SAH = Subarachnoid and Subdural Hemorrhage. 

No. Sex Age P/F Clinical Diagnostic 

the CURE trial 

1 M 33 177 Peritonitis 

2 M 77 209 Legionella pneumonia 

3 M 61 109 
Staphylococcus Aureus 

pneumonia 

4 F 73 155 Streptococcus pneumonia 

the McREM trial 

1 M 37 163 Pneumonia 

2 M 39 170 
Traumatic aortic 

dissection, lung contusion 

3 F 50 202 Pancreatitis, pneumonia 

4 F 30 162 Peritonitis, sepsis 

5 F 49 289 Pneumonia 

6 M 34 192 Open TBI 

7 M 67 234 Post resuscitation 

8 M 39 188 Perf. sigma, peritonitis 

9 M 42 235 Pneumonia, pancreatitis 

10 M 51 230 TBI, pneumonia 

11 M 77 225 Pneumonia 

12 M 74 298 SAH, SDH 

13 M 41 178 Peritonitis 

14 M 62 288 SDH 

15 M 39 143 TBI, pneumonia 

16 M 74 271 
S/P coronary artery bypass 

grafting, pneumonia 

17 M 59 75 ARDS 

18 M 45 173 
Blunt abdominal trauma, 

pneumonia 

VCV patients from the CURE and McREM trials were fully 

sedated and invasively intubated. In the CURE trial, 4 patients 

are underwent two staircases RMs with increments and 

decrements of 4cmH2O. While only incremental RM arms (Set 

1 and Set 3) are studied, yielding 47 cases across 4 patients in 

total (8 for identification and 39 for prediction), with a 

maximum 20cmH2O PEEP interval. McREM includes 18 

patients with 2cmH2O/step incremental staircase RMs starting 

at 0cmH2O. The prediction procedure is applied for higher 

PEEP levels (𝑖 = 2, … , 7) after identification at baseline PEEP 

( 𝑖 = 1 ), yielding a maximum 12cmH2O PEEP interval. 

Detailed clinical RM settings can be found in (Sun et al., 2020) 

for CURE and in (Morton et al., 2019a) for McREM.  

Data from the Maastricht trial included 14 patients with Bi-

level Positive Airway Pressure PCV (METC 17–4-053). Each 

patient received a full staircase RM with 2cmH2O PEEP steps. 

Only incremental PEEP steps are studied, yielding 103 cases 

in total, with 14 cases for model identification and 89 cases for 

prediction validation over maximum 16cmH2O PEEP interval. 

Table 2 - Patients and clinical trial demographics for PCV 

patients in Maastricht (N=14). CABG = Coronary Artery 

Bypass Grafting, AVR = Aortic Valve Replacement. 

No. Sex Age P/F  Clinical Diagnostic 

1 M 77 255 CABG 

2 F 85 308 CABG 

3 M 57 323 CABG 

4 M 47 233 CABG 

5 M 73 150 AVR 

6 M 75 383 CABG 

7 F 71 443 AVR 

8 M 76 398 CABG 

9 F 64 255 SDH 

10 F 68 428 Pneumonia 

11 F 78 143 Pneumonia 

12 F 18 83 
Mitral and Tricuspid Valve 

Replacement 

13 F 71 443 Pneumonia 

14 M 36 158 CABG 

3. RESULTS 

3.1 Elastance evolution and prediction 

Since elastance is defined to be constant over time for each 

PEEP level, basing on (2), an example of elastance evolution 

during inspiration is shown in Figure 1 (a) for Patient 4 Set 1 

in CURE across 6 PEEP levels, identified at PEEP = 11cmH2O 

and predicting response at higher PEEP levels. The 

instantaneous elastance at 𝑇0  over PEEP is also provided in 

Figure 1 (b), where T0 is the time when inspiration ends and 

reaches maximum tidal volume (PIV).  

3.2 Pressure prediction for VCV patients 

Absolute prediction errors of PIP and RMS with median 

pressure error over the whole breath and interquartile range 

(IQR) for both two VCV trials are shown in Table 3. The 

correlation between predicted and clinical PIP is shown in 

Figure 2 (a) with R2 = 0.99 for CURE and R2 = 0.88 for 

McREM, showing a high level of prediction accuracy (R2 = 

0.94 overall) while 1:1 is the perfect match line. 

3.3 Volume prediction for PCV patients 

Absolute prediction errors of PIV and RMS are shown with 

median and IQR errors in Table 4. Correlation for predicted 



and clinical PIV is shown in Figure 2 (b) with R2 = 0.74. It is 

clinically acceptable, and 74% of predictions are greater than 

the clinical value, which can lead to a more conservative 

treatment choice and thus lower the risk of volutrauma. 

 

 
Figure 1 - Examples of elastance evolution during inspiration (a) 

and instantaneous value at end of inspiration, 𝑇0, over PEEP (b) of 

Set 1 for Patient 4 in CURE, identified at PEEP = 11cmH2O. 

 

 
Figure 2 - (a) Predicted PIP vs Clinical PIP (R2 = 0.99 in CURE, R2 

= 0.88 in McREM, and R2 = 0.94 overall); (b) Predicted PIV vs 

Clinical PIV (R2 = 0.74 in Maastricht). 

Table 3 - Pressure prediction outcome for VCV trials in absolute 

PIP and RMS error (cmH2O). 

Pressure prediction CURE trial McREM trial 

Prediction cases 39 cases 82 cases 

Maximum ∆PEEP 20cmH2O 16cmH2O 

PIP error 

(cmH2O) 

median 0.43 1.04 

[IQR] [0.21, 0.79] [0.46, 2.18] 

RMS error 

(cmH2O) 

median 0.97 1.11 

[IQR] [0.81, 1.12] [0.81, 1.48] 

Table 4 - Prediction outcome for PCV trial with absolute PIV 

and RMS error (L). 

Volume prediction Maastricht trial 

Prediction cases 89 cases 

Maximum ∆PEEP 16cmH2O 

PIV error 

(L) 

median 0.037 

[IQR] [0.020, 0.058] 

RMS error 

(L) 

median 0.043 

[IQR] [0.034, 0.063] 

3.4 Sensitivity analysis 

The values of 𝜗1  and 𝜗2  were optimised by line search. To 

quantify the impact of this choice of values and decision to 

used fixed values, 𝜗1 and 𝜗2 are modified ±5%, ±10%, and 

±15% individually and jointly. The changes of predicted PIP 

error (cmH2O), PIV error (L), and RMS error (cmH2O, L) are 

recorded and compared with those form the initial values of 𝜗1 

and 𝜗2, as shown in Table 5 for VCV trials and the PCV trial. 

Table 5 - Comparison of median and average predicted PIP/PIV 

(cmH2O/L) and RMS error (cmH2O/L) between initial set and 

tested analyses of 𝝑𝟏 and 𝝑𝟐. 

Maximum error changes 

with tested analysis of 𝜗1 

and 𝜗2 

VCV trials PCV trial 

CURE McREM Maastricht 

PIP/PIV error 

(cmH2O/L) 

median 0.22 0.07 0.004 

average 0.34 0.04 0.003 

RMS error 

(cmH2O/L) 

median 0.04 0.04 0.002 

average 0.11 0.03 0.002 

4. DISCUSSION 

This approach presents a predictive and personalized virtual 

patient model which uses only data from a single baseline 

PEEP level to predict the respiratory mechanics at higher 

PEEP level (maximum Δ𝑃𝐸𝐸𝑃 = 20cmH2O). PEEP iteration 

is a key setting to optimise MV care and outcomes (Amato et 

al., 2015, Major et al., 2018). This overall outcome is achieved 

using a relatively simple first order single compartment lung 

mechanics model and physiologically relevant basis functions 

for elastance and resistance. It is simplified from more 

a 

a 

b 

b 



complex, and potentially less intuitive, virtual patient models 

with equally accurate prediction (Morton et al., 2018, Morton 

et al., 2019a, Zhou et al., 2021a). 

Resistance is assumed constant across all PEEP levels, as 

identified at the baseline PEEP level. Given the relatively low 

prediction errors, assessing any evolution in resistance would 

add complexity for minimal gain. Morton et al  treated 

elastance and its evolution as a more complex function of both 

volume and pressure. It yielded very good results, but was 

much higher in complexity, and had some higher prediction 

errors. Moreover, the proposed approach also yields clinically 

acceptable results in PCV, which is more difficult to simulate 

than VCV due to the two unknown, coupled variables, flow 

and volume. Hence, greater simplicity in the model presented 

could offer a better approach given to similar to improved 

prediction performance for both VCV and PCV pilot trials.  

In particular, considering the nonlinear evolution of elastance, 

a compensatory equation is proposed in (5)-(6). It successfully 

estimates elastance other approaches did not capture as well 

(Morton et al., 2019a). It is a function of ∆PEEP, predicted 

𝑃𝐸𝐸𝑃𝑖 , PIP identification error of baseline PEEP, and an 

assumed general 𝑃𝐸𝐸𝑃𝑚𝑎𝑥 . 𝑃𝐸𝐸𝑃𝑚𝑎𝑥  is an internal, clinically 

set factor in nonlinear elastance evolution, and set at 24cmH2O 

here, which is a clinically typical and justified maximum PEEP 

level. This choice worked well for all 210 predictions and both 

MV modes.  

Figure 1 presents the clear nonlinear relationship between 

PEEP and elastance, where the shape varies between patients 

and data sets. This performance matches clinically observed 

evolution in (Amini et al., 2017, Chiew et al., 2011, 

Sundaresan et al., 2011). However, despite being a 

personalized approach, it relies on correlation and set values 

for 𝑃𝐸𝐸𝑃𝑚𝑎𝑥 , 𝜗1, and 𝜗2, which may not generalize in larger 

data sets or studies. In contrast, the robustness of prediction 

performance across independent data sets and MV modes 

shows it generalized well enough with these values over data 

sets and modes, as seen in the sensitivity analysis in Table 5. 

In predicting PIP for VCV trials, for the CURE trial, the 

highest absolute predicted PIP error is 1.36cmH2O among 39 

prediction cases, while the errors for 35 cases are within 

1cmH2O. In the 82 McREM trial cases, the highest predicted 

PIP error is 6.26cmH2O. However, except for this worst 

prediction case, all the other predicted PIP errors are within 

4.70cmH2O, while 59 cases are within 2cmH2O and 40 cases 

are within 1cmH2O. Table 3 indicates reproducibility for 

overall pressure trajectory with 0.97cmH2O and 1.11cmH2O 

median RMS error in the CURE trial and the McREM trial, 

respectively, compared to other studies, which identify models 

and make no prediction (Chiew et al., 2011, Sundaresan et al., 

2011), where prediction is the clinically useful impact. 

Considering the very good prediction outcomes in VCV trials, 

a median PIV prediction error with 0.037L is acceptable for 

PCV patients, while biased errors to higher PIV (69 out of 89 

predictions) could lead to a clinically preferable conservative 

decision. Note the overall PIV and RMS errors can be 

improved to 0.026L and 0.029L from 0.037L and 0.043L, 

respectively, with an iteration loop added, similar to (Morton 

et al., 2020). However, it may leads to a convergence problem 

and a lower positive prediction bias, for 36 out of 89 cases. 

Thus, the prediction outcome for PCV patients are equally or 

slighter better with a simpler calculation, while convergence 

problems are avoided with a low computational cost.  

Overall, the prediction errors are quite small for both VCV and 

PCV patients, considering 90% of prediction errors are within 

1.0cmH2O and 3.3cmH2O in CURE and McREM respectively, 

which is clinically highly effective. There is no current means 

to predict lung response, and these errors are well within 

clinically accepted variability. 

This study uses three independent data sets including two VCV 

trials and one PCV trial covering a total of 36 patients under 

various diagnostic and situations. Generalization is reasonably 

demonstrated, and more data with different PEEP settings, 

tidal volume decisions, and MV strategies need to be analysed 

to ensure more widespread generality to more completely 

quantify the impact of the simplifying choices made. These 

studies require more data than available for this proof-of-

concept validation, although the results here show promise. 

The cost of the model simplification presented compared to 

prior studies is less physiological information, which may 

concern some clinicians. While effective, it does not have the 

physiological and clinical relevance of the dynamic functional 

residual capacity (𝑉𝑓𝑟𝑐) calculation in (Morton et al., 2019b, 

Zhou et al., 2021a). Thus, this model is effective and 

generalizes well across MV modes and patients, but may not 

meet some clinical requirements or provide greater 

physiological or clinical insight. This outcome is expected, and 

occurs in many modelling areas. 

In all, this model provides accurate and robust prediction from 

low PEEP levels to higher PEEP levels both for VCV and PCV 

trials, without complicated procedures or iterative calculation 

(Morton et al., 2019a, Morton et al., 2020, Zhou et al., 2021b). 

It is also computationally efficient to identify the required 

parameters, avoiding the training or updating of black box 

models and minimizing computation and identifiability issues 

seen in more complex deterministic models. Finally, despite 

simplification, nonlinear elastance evolution is effectively 

captured, offering new insight into the required level of 

complexity for a virtual patient model for clinical use in MV. 

5. CONCLUSIONS 

This paper presents a simplified predictive model capturing 

nonlinear lung elastance and its evolution to predict lung 

mechanics response during VCV and PCV for optimising 

patient-specific MV settings. It is simpler and more efficient 

in use to reproduce overall pressure and volume waveform 

with an accurate PIP and PIV prediction use bedside available 

MV data at one single PEEP to predict pulmonary outcomes 

when titrating PEEP or potentially other MV parameters. It is 

robust to fixed parameter choices and over the two 

independent VCV data sets and one PCV data set used for 

validation. It could thus be employed as a useful tool for 

clinicians to safely provide personalized MV treatment. 
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