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Abstract: Tissue classification of white or gray matter is a necessary information in the study
of brain connectivity. Currently this classification is made by the coregistration of the implanted
electrodes in the Magnetic Resonance Imaging (MRI) of the patient. This process is complex and
therefore is not always carried out, and is limited by the image resolution and by the accuracy
of the coregistration. This paper studies the performance of machine learning (ML) algorithms
used with features extracted from Stereo-Electroencephalogram (SEEG) signals recorded from
three epileptic patients, for electrode contact classification, to serve as a decision support for
specialists and researchers. The features are based on epileptic detection, and are extracted from
both time and frequency domain. Accuracy, Area Under Curve and F1-Score are evaluated for
each ML algorithm, and feature importance is assessed by feature permutation. Satisfactory
results were achieved, with a maximum of 79% accuracy in group separation for patient specific
classification, and 74% in inter-patient classification, indicating high potential in ML techniques
for brain tissue classification.

Keywords: Brain tissue classification, Stereo-Electroencephalogram (SEEG) feature extraction,
Machine Learning, Neural Networks, Decision support system.

1. INTRODUCTION

Stereoencephalography (SEEG) investigation is a common
procedure performed in pharmacoresistant epileptic pa-
tients. These SEEG recordings done via electrodes inserted
in the brain are a fundamental tool for epilepsy research
to determine the cortical zones responsible for epileptic
seizures before the resective surgery.

In order to better interpret these recordings, it is impor-
tant to know exactly the type of matter (gray or white)
in which the electrodes are inserted in. Brain tissue is
usually classified by the coregistration of the implanted
electrodes in the Magnetic Resonance Imaging (MRI) of
the patient (as in Wang et al. (2013)). This process is
complex, therefore it is not always carried out. Even for
the cases in which the coregistration process is done, it can
be biased by the positioning of the electrodes in the image
and the image resolution and coregistration errors.

To the best of our knowledge, there does not seem to
exist a lot of research regarding brain tissue classification
with Machine Learning (ML) algorithms using features
extracted from SEEG recordings. Mercier et al. (2017)
commented on the differences in signals recorded in grey
and white matter in order to study different signal refer-
encing techniques, but they did not go as far as studying
tissue classification. Pinheiro Machado et al. (2021), pro-
posed a method for tissue classification using the SEEG
signals from electrode pairs, based on non parametric
identification techniques. They presented a brief study on
single electrode tissue classification that achieved around
60% accuracy only. Our goal in this article is to provide a
more in depth study of single electrode brain tissue clas-
sification, relying on features commonly used in epilepsy
detection, as well as ML techniques instead of classical
identification, in order to improve classification results.

Artificial Intelligence techniques are increasingly being
used to handle brain signals, since they have high-
dimensional spatial-temporal features, that are difficult to



process with conventional statistical methods. In epilepsy
research, these techniques are used to detect and predict
epileptic seizures, or even detect the patient’s seizure onset
zone. Shoeb et al. (2009) used spectral energy to automat-
ically detect seizure activity using support vector machine
(SVM). Fergus et al. (2015) compared the performance of
different seizure detection ML methods, and found higher
accuracy using K-Nearest-Neighbours (KNN) and SVM,
and indicated the strong discriminant potential of median
frequency and root-means-squares (RMS) of EEG bands.
Grinenko et al. (2017) detected the epileptogenic zone, dif-
ferentiating between time frequency patterns of the seizure
onset zone and its propagation to its surroundings with
SVM. More advanced deep learning algorithms also prove
to be efficient in the epilepsy studies, like Akut (2019) who
used Convolutional Neural Networks on wavelet transform
coefficients for seizure detection.

In this work, we study the performance of supervised ML
algorithms on the classification of electrode contact on
white or grey matter, using features extracted from the
baseline SEEG recordings in both time and frequency do-
mains. Performance of each algorithm is compared based
on accuracy (ACC), Area Under Curve (AUC) and F1-
Score. Feature importance is assessed via feature permu-
tation, giving information of valuable characteristics from
SEEG recordings for this classification problem.

This paper is organized as follows : the data acquisition
process is presented in section 2, followed by the feature
extraction methods, in section 3. Section 4 gives a brief
description of the ML algorithms used, section 5 shows
the evaluation metrics, classification procedure and feature
importance assessment method. Classification results are
shown in section 6, and finally section 7 concludes this
paper.

2. EXPERIMENTAL SETUP AND DATA

The SEEG signals were recorded using depth penetration
electrodes, with a distant point in white matter as refer-
ence, and a sampling frequency of fs = 1000Hz. A pro-
tocol for data re-use for research purposes was validated
by the Inserm Ethical Committee (INSERM IRB 14-18).
Electrodes were implanted one week prior to the recording
sessions, and were labeled by experts as having contact
with white or grey matter based on the MRI of the patient
as described in Deman et al. (2018). Recording setup can
be seen in figure 1.

Fig. 1. SEEG Recording Experiment setup

Recordings of three different patients are used in this work.
Table 1 shows the number of electrodes connected to brain

matter and the number of recording sessions for each of
them.

Table 1. Available data from each patient

N° of Electrodes N° of Recording Sessions
Patient 1 171 150
Patient 2 146 51
Patient 3 181 152

A total of 27968 signals measured by 498 different elec-
trodes from 353 different SEEG recordings sessions were
available. Since the duration of recordings varied for pa-
tients and sessions, we chose to keep the first 4.044 seconds
of the signal, ensuring that every signal corresponded to
recordings at rest. A sampling rate of 1000 samples per
second was used, resulting in signals of size N = 4044.
Out of the available signals, 2083 were classified as ”bad
channels” by experts. These may consist of non-neuronal
signals from disconnected electrodes, the malfunctioning
of sensors or parasitic electrical activity (Tuyisenge et al.
(2018)). Features were not extracted from these channels.
Missing features were replaced by their median values over
all recording sessions, for the corresponding electrode, of
each patient.

3. FEATURE EXTRACTION

The features used for the classification problem were
extracted directly from the raw SEEG signal, and are the
same commonly used in epilepsy research. Boonyakitanont
et al. (2020) provides a range of possible features to be
used, in time, frequency, and time-frequency domains. A
total of 23 of these features were used, extracted in only
time and frequency domains. Feature extraction is made
on each of the recording sessions of each patient, excluding
the ones classified as bad channels. To better use the
available data, the median value of each predictor over
all recording sessions for a patient will be assigned to the
corresponding electrode. In this way the impact of possible
outliers is reduced.

3.1 Time Domain Features

The first set of features consists of statistical parameters,
like the mean, mean absolute value (MAV), variance,
skewness (third moment order describing data asymmetry)
and kurtosis (fourth moment order describing tailedness of
the distribution). First and third quartiles (Q1 and Q3) are
also used, quantifying the data denseness, as well as the
interquartile range, defined as:

IQR = Q1 −Q3. (1)

Coefficient of variation (CV) was also used, explaining the
dispersion of data in relation to its mean:

CV =
σ

µ
(2)

with σ being the standard deviation and µ the mean
value of the SEEG recordings. Energy, average power, and
root means square (RMS) power of the entire baseline
signal were computed and used as features. Nonlinear



energy (NE) can expand the concept of energy, including
indefinite terms of shifted and lagged sequences:

NE =

N−2∑
i=1

x2(i)− x(i+ 1) · x(i− 1) (3)

where x is the SEEG signal and N the number of samples
in this signal. Line length (L) was also calculated, as the
sum of differences between subsequent samples:

L =

N−1∑
i=1

|x(i)− x(i− 1)| (4)

Boonyakitanont et al. (2020) lists numerous different en-
tropy measurements. In this work, only the Shannon en-
tropy is used. It reflects the uncertainty in random pro-
cesses, and is defined as:

ShEn = −
∑
i

pilog(pi) (5)

where pi is the probability of occurrence of each value in
the SEEG recording. Hurst Exponent (H) is an index of
long-term memory in time series. It quantifies the tendency
of a time series to regress to a long term mean. For self-
similar time-series, H is also related to fractal dimension.
Its estimation was made by the linear regression of the
logarithmic plot of variance of detail versus level of wavelet
decomposition of the signal, as proposed by Flandrin
(1992).

Finally, the number of Zero Crossings (ZC) and number
of Slope Sign Changes (SSC) were computed. These were
shown by Sharmila and Geethanjali (2018) to have good
performance on epilepsy seizure detection when coupled
with ML techniques.

3.2 Frequency Domain Features

Spectral density of the SEEG baseline was estimated using
a modified periodogram, as in (6):

P̂ (f) =
T

N

∣∣∣∣∣
N−1∑
n=0

hnxne
−j2πfTn

∣∣∣∣∣
2

(6)

where P̂ (f) is the spectral power estimate, T = 0.001
the sampling period, and hn a window function. Here, a
Hamming window of size N was used. Only five frequency-
domain features were used: the RMS power of the δ (0.5 -
4 Hz), θ (4 - 8 Hz), α (8 - 13 Hz), β (13 - 30 Hz) and γ (30
- 80 Hz) frequency bands. These bands are very commonly
used when analysing EEG signals (Frauscher et al. (2018)).

4. MACHINE LEARNING ALGORITHMS

This section presents a brief description all of the machine
learning algorithms used in this work. Parameter setting
was based on the highest accuracy result in a small subset
of 30% of the available data.

4.1 Decision Tree

Decision tree algorithm starts off with a root node, con-
taining all the data. Successive binary partitions are per-
formed, until a terminal node is reached, where there are

10 or fewer samples. The most frequent class in a terminal
node is the one that will be assigned to the new sample.
These partitions are based on impurities criteria, like de-
viance, entropy or the Gini Index (Hastie et al. (2009)). In
this work, the last one was selected.

4.2 Random Forest

Bagging (Bootstrap Aggregation) predictors is a method
of generating multiple versions predictors to get an aggre-
gated predictor. When predicting a class, the aggregation
does a plurality vote, where the new sample is assigned
to the most voted class. This technique can reduce the
variance of a single classifier, and improve prediction accu-
racy (Hastie et al. (2009)). The Random Forest algorithm
consists in bagging n random decisions trees, thus creating
a forest. Each of these trees gives a classification, and the
forest chooses the classification having the largest number
of votes over all the bagged trees. For this work, a number
of n = 150 trees was used, since this gave the best accuracy
result on the used subset.

4.3 K-Nearest Neighbours

The principle behind the K-Nearest Neighbour method is
to find the K closest in distance training samples to the
sample to be labeled. It is possible to choose any distance
metric, the euclidean distance being the most common one.
The label most present in the K closest neighbours will be
the one assigned to the new sample (Hastie et al. (2009)).
For this study, euclidean distance was used, with a number
of neighbours K = 11.

4.4 Support Vector Machine

When working with binary classes, a good approach is
to use Support Vector Machines (SVM). This consists of
constructing hyperplane decision boundaries that try to
separate the data as well as possible. SVMs are capable of
producing nonlinear boundaries by constructing a linear
boundary in a large, transformed version of the feature
space. Although this seems computationally expensive,
it is possible to represent the transformed feature vec-
tors h(xi), involving input features via inner products
〈h(x), h(x′)〉. A kernel function can be specified to rep-
resent this inner product K(x, x′) = 〈h(x), h(x′)〉(Hastie
et al. (2009)). Three different kernel functions were tested:
polynomial, radial-basis and linear. The last one was kept
since it provided the best results.

4.5 Naive Bayes

Naive Bayes are probabilistic classifiers that applies Bayes
theorem, with the assumption that features are indepen-
dent given a class. Its decision rule assigns to the new
sample a class with the maximum a posteriori likelihood.
Although this assumption is usually not true, it drastically
simplifies the estimation, and it often outperforms other
alternatives (Hastie et al. (2009)).

4.6 Artificial Neural Network

Artificial neural networks are composed of a single input
layer, with the same number of nodes as the number



of features, a single output layer, and any number of
intermediary layers, often called hidden layers. Each of
these layers consists of one or more neurons. Fitting the
network to our data corresponds to adjusting each node’s
weights to minimize a loss function, with an optimization
algorithm, the most popular one being the stochastic
gradient descent (SGD). In this paper, the training of
the network used SGD with momentum, minimizing the
misclassification rate.

The network used here consists of a single fully connected
hidden layer, with 32 neurons, as represented in figure
2, where x1, x2...x23, are the extracted features. This
structure was achieved via trial and error. Output nodes
give the probability of a sample belonging to each class.
The class with the highest probability is assigned to the
sample.

Fig. 2. Neural network representation

5. CLASSIFICATION EVALUATION

Here the evaluation method of the algorithms are de-
scribed, as well as the evaluation metrics used. A descrip-
tion on the method used to assess feature importance, and
the permutation importance, is given.

5.1 Evaluation Metrics

For the performance evaluation of each model, three met-
rics were used : Accuracy, area under curve (AUC) of
the receiver operating characteristics (ROC) and F1-Score.
Accuracy is a ratio between correctly predicted observa-
tions, both true positives (TP) and true negatives (TN)
to the total observations, with FN and FP being false
negative and false positive predictions.

ACC =
TP + TN

TP + TN + FP + FN
(7)

The F-Measure provides a way of combining precision
(P) and recall (R), precision being the ration of correctly
predicted observations to the total positive predicted ob-
servations, and recall the ratio of correctly predicted ob-
servations to all of predictions of a certain class:

P =
TP

TP + FP

R =
TP

TP + FN

F =
(β2 + 1)PR

β2 ∗ P +R

(8)

where β is the relative importance given to recall over
precision. F1-Score is defined with β = 1 as a harmonic

mean between precision and recall (Chinchor (1992)).
Values of F1-Score closer to 1 indicate a good balance of
class prediction, meaning that no class will be favored by
the algorithm’s prediction.

F1 =
2PR

P +R
(9)

ROC is a visual representation of the performance of a
binary classifier, showing the true positive rate (TPR)
versus False Negative Rate (FNR). The AUC of a classifier,
calculated as the area under the ROC curve, is equivalent
to the probability that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen
negative instance (Fawcett (2006)).

5.2 Classification Procedure

The classification problem consists of correctly predicting
the electrode contact between white or grey matter. The
dataset consists of 498 samples from all patients, and 23
available features. This data must be divided into training
and validation subsets. After each algorithm learns from
the training set, it will assign a class (white or grey) to the
samples on the validation set. To verify the influence of the
training dataset, and generalisation of these algorithms,
Leave-One-Out K-Fold Cross Validation with K = 4 was
used. This technique consists in randomly splitting the
features and labels into K different subsets and using K−1
for the training of the model, and the remaining one for
validation. This is repeated until every subset was used
for both training and validation. Final evaluation consists
on the mean of the metrics over K folds. This entire
process is then repeated n = 20 times, to further verify
the underlying performance of the different methods. This
procedure is illustrated in figure 3.

Fig. 3. Classification procedure setup

By the end of this procedure, the means and standard
deviations of n repetitions of the cross-validation method
of all the evaluation metrics described in the previous
subsection are computed.

5.3 Feature Permutation Importance

Feature importance estimation via feature permutation
is a model inspection technique that randomly shuffles
one feature at a time, and records the overall increase in
misclassification rate (1-ACC). Since this directly breaks
the relationship between the predictor and the classes, a
drop in performance indicates a dependency of the model
in the shuffled feature (L.Breiman (2001)). The original



error of the model eorig is stored, and for each permutation
a new error is calculated eperm. The difference:

FI = epermj − eorigj (10)

is the estimate of feature importance (FI) for feature j.
In the case of bagged models, such as random forests, the
difference between errors is calculated for each individual
learner, and the FI in this situation is:

FI =
dj
σj

(11)

with dl as the mean of the differences between permuted
and original error over all learners, and σj the standard
deviation. Features with the highest increase in error are
considered the most important. The increase in classifica-
tion error will be stored for each iteration of the classifica-
tion procedure, and importance will be analysed visually
in section 6.1.

6. RESULTS

Feature extraction and classification were made using a
commercial software package (MATLAB 9.9.0 The Math-
works Inc., Natick, MA, R2020b).Patient specific and
inter-patient performance were analysed, following the
classification procedure as described in subsection 5.2,
with a K = 4 number of folds. This means that splits
of 75% for training and 25% of validation data were used.
This consisted of a ratio of 128 channels for training and
43 for validation for Patient 1, 110 and 36 for Patient 2,
134 and 47 for Patient 3, and 374 and 124 for the inter-
patient case. Evaluation metrics will be seen in the form
of mean± std.

Table 2. Performance for Patient 1

Algorithm Accuracy (%) AUC F1-Score
Decision Tree 69.40 ± 3.41 0.71 ± 0.04 0.69 ± 0.04
Random Forest 74.42 ± 2.05 0.81 ± 0.01 0.74 ± 0.03
KNN 71.69 ± 1.60 0.79 ± 0.02 0.72 ± 0.02
SVM 75.12 ± 2.82 0.82 ± 0.02 0.75 ± 0.03
Naive Bayes 67.78 ± 1.84 0.76 ± 0.02 0.68 ± 0.03
Neural Network 71.67 ± 2.84 0.80 ± 0.03 0.72 ± 0.03

Table 3. Performance for Patient 2

Algorithm Accuracy (%) AUC F1-Score
Decision Tree 69.22 ± 2.21 0.70 ± 0.02 0.69 ± 0.02
Random Forest 75.44 ± 3.02 0.85 ± 0.02 0.75 ± 0.03
KNN 70.31 ± 2.71 0.79 ± 0.02 0.70 ± 0.03
SVM 79.63 ± 2.01 0.84 ± 0.01 0.79 ± 0.02
Naive Bayes 64.70 ± 1.08 0.71 ± 0.02 0.63 ± 0.04
Neural Network 77.42 ± 3.28 0.83 ± 0.02 0.76 ± 0.03

Table 4. Performance for Patient 3

Algorithm Accuracy(%) AUC F1-Score
Decision Tree 65.44 ± 3.01 0.65 ± 0.03 0.61 ± 0.05
Random Forest 70.31 ± 2.17 0.77 ± 0.02 0.64 ± 0.06
KNN 69.62 ± 2.26 0.75 ± 0.02 0.63 ± 0.05
SVM 69.56 ± 1.69 0.75 ± 0.02 0.64 ± 0.04
NB 65.15 ± 1.00 0.73 ± 0.01 0.64 ± 0.02
Neural Network 69.84 ± 2.43 0.75 ± 0.02 0.58 ± 0.04

Tables 2 through 4 show the patient specific performance
of each algorithm. We notice that Random Forests, SVM
and Neural Networks outperforms the others in most cases,
achieving satisfactory results in all metrics, specially for

patients 1 and 2. KNN also displayed the same behaviour,
but did not perform as well as the other for the second pa-
tient. The overall performance is lower for patient 3. This
may indicate that this classification or feature extraction
method is patient sensitive.

Overall, SVM had better performance in both accuracy
and F1-score, reaching 79.63% and 0.79 respectively, while
Random Forest had better AUC results, reaching up to
0.85. The overall F1-Score indicates that there’s a good
balance between precision and recall, so no class is greatly
favored by any algorithm prediction.

Table 5 shows the inter-patient results. In this case,
Random Forest outperforms every other in the three
evaluation metrics. The standard deviations are lower than
in the patient specific scenario, likely due to the greater
number of samples.

Table 5. Inter-Patient Performance

Algorithm Accuracy (%) AUC F1-Score
Decision Tree 66.34 ± 2.11 0.68 ± 0.03 0.66 ± 0.03
Random Forest 74.03 ± 1.02 0.81 ± 0.01 0.73 ± 0.02
KNN 69.86 ± 1.12 0.76 ± 0.01 0.69 ± 0.02
SVM 72.03 ± 0.68 0.79 ± 0.01 0.71 ± 0.02
Naive Bayes 56.90 ± 0.81 0.69 ± 0.02 0.55 ± 0.05
Neural Network 69.69 ± 1.70 0.77 ± 0.01 0.66 ± 0.02

Overall, Random Forest, SVM and Neural Network algo-
rithms presented satisfactory results in both inter-patient
and patient specific cases. No significant difference was
noted in regards to each algorithm execution time. It is
important to notice that every algorithm presented low
standard deviation for both accuracy and AUC, less than
3% and 0.03 for the most part. This indicates that these
algorithms are robust to the training data, and may have
the ability to generalise well.

6.1 Feature Importance

In order to find what features contributed the most to
brain tissue classification, feature importance was assessed
in the inter-patient scenario, with the Random Forest
model, using (11). This algorithm was selected because
it performed the best in this scenario. This can provide
information on features that may be discriminant of the
electrode contact tissue in general and not for each specific
patient, using this specific algorithm.

Figure 4 shows the 10 features that contributed the most
to the classification, with FI in the form of mean± std in
the y-axis.

RMS power from δ and γ frequency bands are the most
important features. Some statistical features such as IQR,
VAR and Q3 also seem to provide valuable information
for this classification problem. Energy, average and RMS
power from the totality of the baseline signal also displayed
this behaviour. The same is observed with the Hurst
exponent, indicating that fractal analysis of the SEEG
signal can also be of use on electrode contact classification.
Standard deviation over the repetitions of the classification
procedure is rather high, FI rankings of features shown in
figure 4 may vary depending on the number of repetitions.

There is not a great disparity between the FI values of the
ten most important features, going from 0.78 of the most



Fig. 4. Feature Permutation Importance

important feature (RMS power from δ band) to 0.48 to
the tenth most important (Energy). This means that the
contribution of most features is still important to achieve
this level of performance. Kurtosis, skewness and RMS
power of frequency band β had FI values of around 0.25.
Line length proved to be the least important, with a FI
value of 0.1. All the remaining features had a FI value of
above 0.4.

7. CONCLUSION

In this paper an electrode contact classification method
was proposed, that reaches up to 79% accuracy in patient
specific and 74% in inter-patient applications, that could
be used as a decision support for specialists in the field.
This performance was achieved with a rather small dataset
of only 3 patients. Further tests with a larger number of
patients would be required for validation of the method,
and it is expected that the performance would increase.

This method relies solely on features extracted from the
baseline of SEEG recordings. Common features used in
epilepsy detection proved to have some discriminatory
power of cortical tissue as-well. Feature importance anal-
ysis showed that δ and γ frequency bands behaviour were
the most important features for this classification, showing
consistent higher values of FI than other features. Further
studies regarding frequency and fractal analysis of SEEG
recordings may provide even more discriminant informa-
tion and increase correct prediction rate.
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