
Closed-loop control of anesthesia and
hemodynamic system: a Model Predictive

Control approach

Anca Maxim1 and Dana Copot*2,3

1 “Gheorghe Asachi” Technical University of Iasi Department of
Automatic Control and Applied Informatics Blvd. D. Mangeron 27,

700050 Iasi, Romania
2Research group of Dynamical Systems and Control, Ghent University,

Tech Lane Science Park 125, 9052, Ghent, Belgium
3EEDT—Core Lab on Decision and Control, Flanders Make

Consortium, Tech Lane Science Park 131, 9052, Ghent, Belgium
Corresponding author: dana.copot@ugent.be

Abstract: This paper proposes a Model Predictive Control (MPC) approach of both anesthesia
and hemodynamic systems. The designed control strategy has been validated on a novel and
unique patient simulator. The aim of this paper is to evaluate the feasibility MIMO closed-loop
control of anesthesia and hemodynamic variables taking into account the interaction (synergic
and antagonistic) between subsystems. The proposed methodology takes into account patient
variability, is robust to subsystems interaction and meets the clinical objectives. The algorithm
is tested in simulation on a hypnosis-hemodynamic combined model for use during general
anesthesia. The preliminary results are promising and show the effectiveness of the control
procedure.
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1. INTRODUCTION

General anesthesia is a multi-facet drug infusion control
problem as it requires solving a puzzle of several dy-
namic states adequately induced and maintained, while
mitigating comorbidity induced risks and surgical stimu-
lation (Dumont and Ansermino, 2013; Ghita et al., 2020).
Hypnosis is the lack of consciousness, analgesia is the lack
of pain and neuromuscular blockade is the lack of move-
ment. To achieve a patient state that allows the surgeon
to perform a procedure, hypnotic (e.g. remifentanil), opi-
oids (e.g. propofol) and neuromucular blocking agents (e.g
atracurrium) drugs have to be administered. Individual
responses to hypnotic and opioid infusion vary significantly
in adults and even more in children (van Heusden et al.,
2014). When administered together propofol and remifen-
tanil have a synergistic effect. The anesthesiologist needs
to continuously monitor the patient state and adjust drug
dosing in order to avoid under- and over-dosing. Under-
dosing can result in anxiety, tracheal tube intolerance,
infection while over-dosing may cause hypotension, pro-
longed recovery time, delayed weaning from mechanical
ventilation.

1 This research was supported by the Flanders Research Foundation
(FWO) post-doctoral grant fellowship No. 12X6819N (Dana Copot).
This work was supported by a grant of the Ministry of Research,
Innovation and Digitization, CNCS/CCCDI UEFISCDI, project
number PN-III-P1-1.1-PD- 2019-0757, within PNCDI III. (Anca
Maxim)

Along with the anesthetic variables, the anesthesiologist
or critical care physician have to regulate and monitor
hemodynamic parameters. Mean arterial pressure (MAP)
and cardiac output (CO), carbon dioxide, oxygen levels,
fluid levels and more are part of the hemodynamic sys-
tem stabilization. To maintain the MAP and CO within
acceptable operating intervals the practitioner administers
sodium nitroprussdie (SNP) and dopamine (DPM).

Optimizing the administration of analgesics and hypnotics,
as well as drugs for hemodynamic stabilization, are among
the various mundane but time- and attention-intensive
activities the anesthesiologist has to perform. These ac-
tions are repetitive and require constant vigilance, hence,
they are prone to human error and are also associated
to a significant inter- and intra-practitioner variability
(Joosten et al., 2016). Due to the complexity, performance
pressure and inter-patient variability, the performance of
the anesthesiologist is sub-optimal. This may also have an
impact on the long term outcomes (Dumont and Anser-
mino, 2013). The main challenge in general anesthesia is
to achieve acceptable clinical outcomes while minimizing
undesired effects. Drug infusion rates are traditionally
manually controlled by the anesthesiologist. Computer
aided open-loop delivery systems known as target con-
trolled infusion (TCI) systems are available. These are
based on population based pharmacokinetic (PK) and
pharmacodynamic (PD) models to calculate the required
infusion rates to reach the drug concentration set by the
anesthesiologist. To account for patient inter-variability



target concentrations have to be adjusted by the anesthe-
siologist (van Heusden et al., 2014).

Closed-loop control of drug infusion has the potential to
reduce the effect of inter-patient variability and improve
control of the general anesthetic state. Clinical trials re-
veal that closed-loop control of anesthesia can outperform
manual control (Ghita et al., 2020). The considered con-
trol approaches in anesthesia vary from classical control
strategies to advanced control algorithms (Padmanabhan
et al., 2015; Schiavo et al., 2021; Hosseinzadeh et al., 2020;
van Heusden et al., 2020; Ionescu et al., 2008; Neckebroek
et al., 2013; Ghita et al., 2020).

Fig. 1. A complete system for closed-loop control of anes-
thesia and hemodynamic variables.

This paper presents the first full MIMO control imple-
mentation for anesthetic and hemodynamic management
schematically represented in Figure 1. In Section II the
PK-PD models used for control design are presented. Sim-
ulations are performed using the Matlab/Simulink open-
source benchmark patient simulator also described in this
section. The feasibility of the tested control algorithm and
its performance is discussed in Section III followed by a
detailed discussion on the preliminary results. Conclusions
and future perspectives are provided in Section IV.

2. MATERIALS AND METHODS

2.1 Models

The model usually used to predict/suggest the optimal
dosage of drugs consists of two parts: 1) pharmacokinetic
(PK) model and 2) pharmacodynamic (PD) model. The
PK model relates the drug plasma concentration with
the administered dose. A generic three-compartment PK
model is given in figure 2. In this paper transfer rates
between compartments are considered equal and the equiv-
alent 4th-order linear transfer function model represented
by equation (1) has been used for simulations.

Fig. 2. Dose–response relationship for one drug. Phar-
macokinetics are depicted as a multicompartmental
model. Pharmacodynamics are shown as a sigmoidal
model. Kinetics and dynamics are linked by an effect-
site compartment (Ionescu, 2018).
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The PD model relates the plasma concentration with the
pharmacological end effect. The dose-effect response in the
PD model is represented by a nonlinear Hill equation,
which relates values of the drug concentration profiles with
values of its effect. Propofol PK model parameters are cal-
culated using the Schnider model (Minto et al., 1997a) and
Remifentanil model parameters are calculated using Minto
model (Minto et al., 1997b). There is a synergic effect when
using Remifentanil in combination with Propofol, reducing
the Propofol concentration for loss of consciousness by
25% and hence minimising the risk of over-dosages (Milne
et al., 2003). The combined effect of two drugs is then a
3D nonlinear surface. A detailed description of the PK-
PD models for the opioid and hypnotic drug, but also the
models for the hemodynamic parameters along with the
interaction between sub-systems are detailed in (Copot
and Ionescu, 2018; Ionescu et al., 2021).

The nonlinearity of the Hill curve represents a great chal-
lenge from control standpoint. (Ionescu, 2018) introduced
a computationally efficient Hill curve adaptation strategy
for BIS in order to overcome this challenge. Time delays in-
troduced by the sensor affects the closed-loop performance.
Online time-delay estimation was suggested in (Ionescu
et al., 2011) to compensate for the variable BIS delay
for closed-loop control. Hitherto, there is no generally
accepted device for monitoring of analgesia. Development
of novel sensors to provide a reliable and objective value of
the nociception/ antinocicetion balance has been impacted
closed-loop delivery of proper dosing. A comprehensive
review on the commercial solutions that have appeared
in recent years is done by (Ghita et al., 2020). It tack-



Fig. 3. The integral structure of anesthesia-hemodynamic
simulator developed in Matlab–Simulink. The simu-
lator consists of two main subsytems: Anesthesia and
Hemodynamics (Ionescu et al., 2021).

les the monitoring limitations (e.g. non-specific markers,
unknown robustness against the influence of other med-
ications, influence of cofounding effects) of each device,
deciding that the evidence to use one nociception monitor
versus another is overall inconclusive. Nowadays in clinical
practice the anesthesiologist asses the level of analgesia
based on BIS signal and other parameters. Muscle relax-
ant drugs are frequently given during surgical operations.
The non-depolarising types of drugs act by blocking the
neuromuscular transmission, therefore producing muscle
paralysis. The neuromuscular blockade level is measured
from an evoked EMG obtained at the hand by electrical
stimulation.

2.2 Patient Simulator

Closed loop simulations and closed loop clinical data for
regulating depth of anesthesia using computer control
algorithms have been published recently (Padula et al.,
2016; Padmanabhan et al., 2015; Schiavo et al., 2021;
Hosseinzadeh et al., 2020). We are at the very beginning
of what we call - a new era of personalized medicine -
enabled by advances in computer technology and powerful
information processing tools, in which artificial intelligence
tools are employed. In an effort to provide the cross-
disciplinary community with suitable and accessible tools
for systematic analysis of pros- and cons- of various control
algorithms, a patient simulator has been programmed in
Matlab/Simulink from MathWorks(R) software platform.
This is an open source patient simulator, where the com-
munity can set, add and modify its components as know-
how and insight become available. The Matlab-Simulink
scheme of the simulator is given in figure 3.

There are 5 possible manipulated variables (drug dosing
rates) and 5 direct controlled variables (outputs), along
with numerous interaction effects.

The direct cause-effect models include:

• Propofol drug rate to hypnotic state evaluated with
BIS variable;
• Remifentanil drug rate to analgesic state evaluated

with RASS variable;
• Rocuronium/Atracurium drug rate to neuromuscular

blockade state evaluated with NMB variable;

• Dopamine(DP)/Dobutamine(DB) drug rate to car-
diac output state evaluated with CO variable;

• Sodium Nitroprusside drug rate to mean arterial
pressure state evaluated with MAP variable.

The interaction models include:

• Propofol and Remifentanil synergic effects on BIS
variable (surface model);

• Remifentanil effect lowering MAP and increasing CO;
• Increasing CO will increase clearance rates of Propo-

fol, thereby increasing BIS values;
• Antagonistic effects between DP/SNP and CO/MAP;

2.3 Control Design

In this paper, a centralized MPC architecture with a
input-output formulation is implemented. The developed
strategy has the roots in the EPSAC (Extended Prediction
Self-Adaptive Control) algorithm (De Keyser, 2003), with
details for a distributed formulation provided in (Maxim
et al., 2018). Hereafter, a brief summary of the method is
provided.

Consider that the hypnosis-hemodynamic system can be
described by the continuous time model:

 y1y2y3
y4

 =


Ĝ11 0 0 0

0 Ĝ22 0 0

Ĝ31 Ĝ32 Ĝ33 Ĝ34

Ĝ41 Ĝ42 Ĝ43 Ĝ44


 u1u2u3
u4

 (2)

where the outputs yi, ∀i ∈ {1, 2, 3, 4} are CeP (effect
site concentration), RASS, CO and MAP, respectively,
whereas the input variables ui, ∀i ∈ {1, 2, 3, 4} are propo-
fol, remifentanil, DPM and SNP.

Let us assume that the compact model (2) can be decom-
posed into N sub-systems, dynamically coupled through
inputs and subject input constraints. Each sub-system
i,∀i ∈ N , where N denotes the set {1, . . . , N} ⊆ N has
the following model:

yi(k) = Gii(q
−1)ui(k) +

∑
j∈Ni

Gij(q
−1)uj(k) + wi(k)

wi(k) =
1

1− q−1
ei(k)

(3)

where ui(k) and yi(k) are the input and output variables;
the disturbance wi(k) is modelled as a white noise signal
ei(k) filtered by an integrator to ensure zero offset tracking
performance; q−1 is the backward shift operator; k denotes
the discrete-time index; Gii(q

−1), Gij(q
−1), ∀i ∈ N , ∀j ∈

Ni are discrete-time transfer functions with monic denom-
inators. The set Ni = {j ∈ N : Gij(q

−1) 6= 0} denotes all
the neighbours for sub-system i, excluding i itself. For our
process with N = 4, the neighbourhoods are N1 = {0},
N2 = {0}, N3 = {1, 2, 4} and N4 = {1, 2, 3}).
It is noteworthy to mention that, since we separately ma-
nipulate the CeP and RASS variables through the Propo-
fol and Remifentanil dosages, the first two neighbourhoods
are empty, meaning that there are no interactions in the
mathematical model. However, as previously mentioned,
these hypnosis components are highly interacting, and this
will be visible in the BIS index.



The input constraints are formulated as

umin
i ≤ ui ≤ umax

i , (4)

where umin
i , umax

i , ∀i ∈ N are the minimum and maximum
input limits.

For each sub-system i, ∀i ∈ N a local agent minimizes a
local cost function defined as (Maxim et al., 2018):

Ji(Yi(k), Ui(k), {Uj(k)}j∈Ni
) = min

Ui(k)
∆UT

i Qi∆Ui

+ (Rsi − Yi)T (Rsi − Yi)
subject to (3) and (4)

(5)
based on the future output trajectory

Yi(k) = [yi(k + 1|k) . . . yi(k +Np|k)]
T
, ∀i ∈ N

where the reference trajectory Rsi(k) ∈ RNp , ∀i ∈
N is assumed constant over the prediction horizon Np

and equal with the set-point at the current time in-
stant k. Note that in (5), the first term minimizes
the magnitude of the control increment ∆Ui(k) =

[∆ui(k|k) . . .∆ui(k +Nc − 1|k)]
T
, ∀i ∈ N , with Nc be-

ing the control horizon, while the second term penalizes
the prediction error.

Furthermore, the control increment variable is defined as
∆ui(k + l|k) = ui(k + l|k) − ui(k + l − 1|k), obtaining
∆ui(k + l|k) = 0, l ≥ Nc. The diagonal weight matrix
Qi = λiINc uses λi as a tuning parameter for adjusting
the closed-loop speed.

The core idea is to make use of the superposition principle
for linear systems, to define the future (predicted) response
Yi(k) as the cumulative result of two effects:

Yi(k) = Ȳi(k) + Y opt
i (k), (6)

where Y opt
i (k) is the effect of the optimizing future control

actions Ui(k), ∀i ∈ N ; Ȳi(k) is the basic future scenario,
computed using the sub-system’s model prediction and the
disturbance prediction given by filtering techniques.

Note that the optimal solutions Ui(k)∗, ∀i ∈ N are
computed using the input trajectories received from the
corresponding neighbours.

3. RESULTS AND DISCUSSION

In this paper centralized Model Predictive Control for
hypnosis in presence of hemodynamic parameters is in-
vestigated. Here, the first attempts towards a completed
picture of anesthesia paradigm have been undertaken.
For the first hand results presented in this paper, the
following simulation scenario has been employed. Four
manipulated inputs propofol for hypnosis, remifenatnil for
RASS, dopamine for cardiac output (CO) and sodium
nitroprusside (SNP) for MAP and are taken into account.
The aim of the analysis is to stabilize hypnosis via CeP
variable, RASS using remifentanil, and the hemodynamic
variables CO and MAP despite their interaction among
each-other and with the anesthesia variables. In this initial
study, only one type of patient is used, as afore-described
in the subsection on the prediction models. The numerical
values for each model are taken from (Ionescu et al., 2021).
The recommended intervals for the input/output variable
are given below.

Fig. 4. Input/Output ranges for the manipulated and
controlled variables.

Reference tracking in presence of disturbance is tested and
the results presented in figures 5-8.

The tuning parameters of the controller are: sampling in-
terval of 1 second, a control horizon of Nc = 1 sample, and
a prediction horizon of Np = 60 samples. The optimization
variables are λi = 1, ∀i ∈ 1, 2 and λj = 0.1, ∀j ∈ 3, 4.
The inputs are limited to umin

1 = 0 and umax
1 = 3.5 for

the propofol values, umin
2 = 0 and umax

2 = 2.5 for the
remifentanil values, umin

3 = 0 and umax
3 = 10 for DMP

dosage whereas umin
4 = 0 and umax

4 = 10 are the limits
used for SNP input.

The performance of the proposed control algorithm was
successfully validated against a disturbance rejection ex-
periment, where a series of impulses with the height of 1
and various lengths were added to the first output. Thus,
at sample times 100, 200, 270, 420, 500, 750, 1050, 1300
seconds, an impulse with the length of 50, 50, 50, 30, 50,
100, 100, 50 samples, respectively, was added to y1, and the
direct effect is best visible in figure 5, while the interaction
reaction with the hemodynamic variables is depicted in
figures 7-8.

Fig. 5. Hypnotic output (BIS) in % as a function of
simulated sampled time.

The management of anesthesia moves from single drug
to multi-drug co-administration, making small but es-
sential steps forward towards a fully computerized reg-
ulatory paradigm of personalised patient services. Co-
administration of Propofol and Remifentanil for anesthesia
regulation has been very recently re-assessed in simulation
studies and in clinical trials (Neckebroek et al., 2019).



Fig. 6. Ramsay Agitation Score Scale (RASS) as a function
of simulated sampled time.

Fig. 7. Cardiac Output (CO) as a function of simulated
sampled time.

Fig. 8. Mean arterial pressure (MAP) as a function of
simulated sampled time.

Closed loop control plays a crucial role in both the natural
and engineering world. In anesthesia, closed-loop control
promises to limit the impact of individual patient variabil-
ity on performance, optimize anesthesiologist workload,
increase time spent in a more desirable clinical state, and
ultimately improve the safety and quality of anesthesia
care. Physicians need to ensure a specific state variables
in the operating range by administering a cocktail of drugs.

It is well-known that the natural control algorithm to
mimic medical decision-making is model predictive con-
trol. The challenge is the strong and dynamic coupling be-
tween the various sub-systems (anesthesia, hemodynamic,
underlying risks) and the complexity of optimization vari-
able matrix. For example, decoupling control techniques
can be applied.

Using the A-H patient simulator from (Ionescu et al., 2021)
with disturbance models, various drug infusion profiles
can be evaluated against predicted outputs. The receding
horizon principle implies that at the next control sample
all optimization is reiterated based on the updated data
feedback information. The maintenance phase of anesthe-
sia needs an additional control loop. This is a supervisory
control loop and it provides the set-point to the predictive
control loop. Each surgical stimulus profile can be seen
as an event, and event based control would be a good
candidate. It could be manually triggered (e.g. anesthe-
siologist) or digitally based on signal profile (e.g. filtered
derivative) to activate the next in line surgical activity
sequence for which a disturbance model profile exists. This
provides extra information to the supervisory controller
which updates setpoints to lower level controls (predictive,
PID, ratio). For example, a ramp-step form disturbance
(e.g. intubation, internal organ handling) will require a
lower interval limit setpoint value than a light step form
disturbance (e.g. suture, skin closure).

The control objective in this A-H regulatory problem is
not precision control, but rather maintaining the output
variables (with synergic and antagonistic interactions)
within safe intervals, hence, interval constraints need to
be considered. Multiple objectives for output variables can
be globally minimized through Pareto front optimization,
but may be costly in terms of computational burden for
fast online execution. Alternatively, would be possible to
simplify the search problem by introducing priority levels,
as investigated in (Ionescu et al., 2020).

4. CONCLUSION

Currently, the literature both clinical and biomedical en-
gineering, both with roots in systems and control theory,
have proposed numerous schemes to induce and maintain
hypnosis and neuromuscular blockade and these two as-
pects of anesthesia are now mature for integration in a
single environment. Hence, the missing piece in the anes-
thesia paradigm is analgesia, in this study the effect of
Remifentanil is evaluated using the RASS variable.

The potential advantages of using closed-loop control of
anesthesia are: optimal drug dosage specific for each pa-
tient profile; avoidance of under and over dosage; reduction
in anesthetist intervention. However, when applied to drug
administration closed-loop control, the administration of
drugs in response to clinical effect (surgical manipulations)
is based on knowledge of the fate of the drug and its effect
in the human body. Several different parametric and non-
parametric pharmacokinetic-dynamic models have been
described in the literature as basic predetermined models
for anesthesia applications. During control, the models
need to be updated to meet the patient’s individual phar-
macological behavior; otherwise, the model does not reflect
the actual control condition and is useless. The outcome



of this paper indicates that the proposed methodology is
robust for inter-patient variability, nociception stimulation
and anesthesiologist intervention (disturbance rejection)
which is the main challenge in clinical practice.

4.1 Software

The open source simulator is available for download at the
following link https://nl.mathworks.com/matlabcentral/
fileexchange/85208-open-source-patient-simulator.
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