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Abstract: This paper proposes two modeling approaches to predict lung tumor dynamics as an
effect of radiotherapy. Real clinical information of non-small cell lung cancer (NSCLC) patients
undergoing stereotactic body radiation therapy (SBRT) as the primary treatment method has
been used for numerical simulations. The classical Gompertz model for tumor volume growth
prediction was modified using a fractional parameter and combined with the linear-quadratic
model to foresee the effect of SBRT on the targeted tumor. Another approach was implemented
by following a pharmacokinetic-pharmacodynamic (PKPD) minimal compartmental model
for single therapy with SBRT. Statistical analysis has been carried out to compare the two
models. In terms of tumor growth prediction, obtained results indicated a decrease in the total
tumor volume for both modeling approaches. A striking observation to emerge from the data
comparison is the interesting perspective of fractional tools for further exploration in modeling
tumor growth.
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1. INTRODUCTION

Recent evidence suggests that in 2020 there were 2.2 mil-
lion cases of lung cancer recorded worldwide, with 318.000
cases from the EU (Union for International Cancer Con-
trol, 2020). Belgium reported a considerable amount of
cases (9.600) during last year (Europa Analytics, 2020).
Non-small cell lung cancer represents the largest propor-
tion of lung cancer which occurs at a rate of 85%. About
70% of the diagnosed patients have an advanced stage
of NSCLC. The tumor cells in this stage grow rapidly
and spread into the tissues surrounding the lungs and
subsequently into other parts of the body.

The most commonly used conventional treatment methods
to overcome NSCLC in different stages are: radiotherapy,
chemotherapy, immunotherapy, and targeted therapy. The
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patients can undergo one therapy or a combination of
two or more therapies applied consecutively (e.g., con-
current radio-chemotherapy, chemo-immunotherapy, etc.).
The outcome of the combination of treatments can be
predicted using mathematical modeling (Ionescu et al.,
2020; Drexler et al., 2017). However, much uncertainty still
exists regarding the relationship between different factors
that influence the exact treatment plan, such as size and
location of the tumor, degree of spread, patient response to
treatment, and overall health. Radiotherapy (RT) is one of
the most commonly used treatments for NSCLC patients.
More specifically, SBRT is a comparatively novel radiation
technique that improves the reduction of healthy cells’
exposure to radiation. In SBRT, large doses per fraction
of radiation are delivered to the target tissue precisely
to maximize the tumor response (Lo et al., 2010). This
choice of treatment promises high rates of local control of
the tumor and provides an alternative to the non-surgical
tumors (Joiner and van der Kogel, 2009; Verellen et al.,
2007).



In cancer research, there is a steady growth in the usage of
computational modeling to optimize treatment planning
(Altrock et al., 2015; Ghita et al., 2021). Optimization
refers to the balance between the effect of the required
amount of drug dosage to eliminate tumor cells and the
minimization of the same effect on healthy cells. The
tumor volume after treatment depends on the interaction
between the therapies, patient response, and the effect of
treatment on tumor cells. Modeling can serve as a research
tool for moving towards individualized treatment methods
through multiple parameter variations, notwithstanding
the accuracy of current practice. (Ionescu et al., 2020).

The development of mathematical models of tumor growth
leads to a very large class of possible methods to charac-
terize the invasion and growth of tumors in living tissue.
While there is a manifold of tumor growth models existing
in literature, the major challenge is to translate clinical
data describing the carcinogenic process by elucidation of
different mechanisms. Modeling strategies usually address
simple physiological principles in terms of ordinary differ-
ential equations (ODE). Two of the most simplistic tumor
growth models are the exponential and linear exponential
models (Sápi et al., 2015). However, they are unrealistic as
the growth described by these models is not limited (i.e.,
bound by an upper limit). Three other models which de-
scribe the growth rate of tumor cells are Gompertz, Logis-
tic, and Bertalnaffy (Murphy et al., 2016). In these models,
the growth rate increases reaching a maximum value and
finally achieving a state of equilibrium (Tabassum et al.,
2019). ODE models allow fine-tuning of parameters and
can be analytically solved, but lack in describing the full
complexity of tumor evolution.

In this work, we propose two improved mathematical
models of tumor growth that fit different SBRT treat-
ment options for NSCLC patients. The study investi-
gates the tumor dynamics using patient data represent-
ing planning target volume (PTV), treated using SBRT
and three standard regimens depending on tumor loca-
tion. Both models use improved approaches for model
accuracy concerning clinical data, thus potentially helping
decision-making treatment schedules in lung cancer. The
first model is the Gompertzian model that was modified to
introduce a fractional operator and effect of radiotherapy
to describe the behavior of irradiated tumor volume. The
second model is the pharmacokinetic-pharmacodynamic
(PKPD) compartmental model from Ionescu et al. (2020),
employed for investigating the effect of radiation therapy
on tumor cells. Using data of NSCLC patients undergoing
SBRT, we were able to simulate different approaches that
describe tumor development with growth behavior. Given
the variety of dosing schemes available, comparisons using
computer simulations are convenient for quantifying the
association between tumor volumetric changes and SBRT.

The remainder of this paper is structured as follows. In
section 2, we describe the mathematical methodology by
introducing the fractional Gompertz and PKPD models
considered in this study, while discussing the adopted
improvement tools. Patient data and the clinical protocol
are also mentioned. Section 3 analyzes the simulation
and comparative results, while section 4 discusses the
differences between the obtained results and their physical
meaning. Finally, section 5 draws the main conclusions.

2. MODELS AND METHODS

2.1 Gompertz Model with Fractional Operator

One of the most common models to describe the dose-
response of radiotherapy and cell survival under radiation
is the Linear Quadratic model (Altrock et al., 2015).
Having the same dose per fraction in a multidose schedule,
we assume equal radio-biological effect for each successive
fraction, expressed as (Joiner and van der Kogel, 2009):

Er = αD + βdD (1)

where Er is the level of radiotherapy effect, D = m · d is
the total dose in Gy, m is the number of fractions, d is
the dose per fraction in Gy, α and β are radio-sensitivity
parameters in Gy−1 and Gy−2 respectively. In the model,
the ratio of the radio-parameters was considered to be 10
Gy, NSCLC exhibiting usually low fractionation sensitivity
(high α/β) (van Leeuwen et al., 2018).

Gompertz fractional model is governed by gompertzian
growth pattern where the tumor growth has a sigmoid
shape with an inflection point, after which the growth
slows down in time and converges to a plateau. In this
model, the tumor volume growth is limited by a lack of
cell nutrients. The equation describing the Gompertzian
model is as follows (Hong and Zhang, 2019):

ẋ1 = afx1(t) − bx1(t)lnx1(t) (2)

where x1 is the proliferation tumor volume in mm3, a
is the rate of growth of tumor volume in 1/day and b
is the coefficient of tumor growth deceleration constant
(1/mm3·day). The equation (2) was previously modified
to include the fractional operator f that can be varied
between 0 and 1.

The changing necrotic tumor volume is given by:

ẋ2 = nx1(t) − wx2(t) + Etrx1 (3)

where n is the necrotic rate of the tumor cells in 1/day, w
is the washout rate of the necrotic tumor cells in 1/day.
Including the effect of radiotherapy on the tumor cells, we
obtain:

ẋ1 = afx1(t) − bx1(t)lnx1(t) − nx1 − (Etrx1 + ur) (4)

while adding Etr the effect of radiotherapy on the tumor
cells. The input that contains the fractionated ratios
according to the treatment scheme is ur in Gy/day. The
overall output of the model y, giving the total tumor
volume in mm3, is:

y = x1 + x2 (5)

2.2 PKPD Compartmental Model with Interaction Term

The PKPD model formulation considers the relevant char-
acteristics for the tumor growth model under RT: tumor
cell proliferation, necrotic volume and radiotherapy, in-
cluding the interaction of tumor cells with RT. Instead of
the Linear Quadratic model, the Incomplete Repair (IR)
model has been used as it is more robust for the entire
range of tumor cells radiosensitivity (Ionescu et al., 2020):

ẋ1 = (a− n)x1 − Etrx1
ẋ2 = nx1 + Etrx1

(6)



Fig. 1. Distribution of radiotherapy profiles for Patient 1 (left), Patient 2 (middle) and Patient 3 (right) with total dose
representation of 54 Gy (single doses of 18 Gy), 48 Gy (single doses of 12 Gy) and 60 Gy (single doses of 7.5 Gy).

Interactions that occur when the functional effect of tumor
cells come in contact with radiation therapy have been
addressed in Ionescu et al. (2020). This approach enables
the identification of event dynamics further introduced for
both presented models:

ẋ3 = −crx3 + ur (7)

ẋe3 = −crxe3 + Etrx3 (8)

where cr is the clearance of the radiation effect in 1/day,
xe3 is the effect of radiotherapy concentration and x3 is
the radiotherapy level in mg/(ml·day). The effect upon
interactions of tumor cells with radiotherapy applied has
been further described as:

Etumor/RT =
Iγ

1 + Iγ
(9)

where γ is the patient response and I the interaction term:

Itr = nnt + nnr + σ · nnt · nnr (10)

where nnt = x1/E50t and nnr = xe3/E50r in (1/day3)
are the normalized concentrations terms with respect to
tumor cells and radiotherapy concentration, E50t and E50r

in mg/ml are the associated half effect terms for tumor
cells and RT, and σ is the synergy term.

2.3 Clinical Data and Protocol

Before commencing the study, ethical clearance was ob-
tained from the Medical Ethics Committee, GZA Hospital
Antwerp, Belgium (clinical study protocol RIMIRT no.
CTOR20105GZA). All the applicable regulatory require-
ments were fulfilled. All involved patients provided written
consent after receiving an explanation of the study. Data
collection was done for patients with NSCLC and lung
metastases eligible for SBRT according to the oncology
center guidelines.

Three different treatment schedules used in the stan-
dard care path for SBRT were considered for modeling.
No cancer-specific concomitant medications were adminis-
trated for these patients. The fractionated SBRT protocol
and specific RT delivery days for the three patients are
presented in Figure 1, according to the clinical proto-
col performed. The administrated radiation profiles are
presented for patient 1 (initial tumor volume: 4.9 cm3),
patient 2 (initial tumor volume: 23.6 cm3) and patient 3
(initial tumor volume: 63.1 cm3). The tumor volume was

assessed during CT-based simulations used for establishing
the SBRT treatment, usually 7 to 14 days before start-
ing the treatment delivery. The planning target volume
(PTV) was considered for numerical simulations. PTV is
preferably used in treatment planning to select appropri-
ate beam sizes and beam arrangements for ensuring the
delivery of the prescribed dose to the targeted internal
tumor volume. MATLAB R2020B was used to carry out
the simulations and statistical analysis.

3. RESULTS

In this paper, the simulations were carried for a period
of time that included the clinical SBRT protocol and an
extension until 30 days where no doses were given in the
remaining days.

In the figures 2, 3, and 4, the blue stems indicate the total
tumor volume and the red stems the necrotic tumor vol-
ume for the three patients. In these plots, the identical pa-
rameters in both models are kept constant for comparison
and visualization purposes, while two parameters are var-
ied for each set of figures. The mathematical models pre-
sented were used to predict the patient-specific responses
to treatment expressed by tumor volume. The models were
parameterized with patient data collected at diagnosis and
literature-specific values. For both models, the value for
growth rate a was kept constant at 0.56, leading to an
increased final tumor as the higher rate of proliferation
consists of a higher number of active tumor cells. For the
validation of the proposed work, future simulations will
include more clinical data, as well as values before and
after the patient has undergone SBRT treatment.

3.1 Simulation results for the PKPD model

Figure 2 shows the representation of simulation results
for the PKPD model. It can be observed that the end
total tumor volume decreases for all patients. The decrease
in the single fractionated doses from patients 1 to 3
corresponds to the increasing total tumor volume, though
to a large extent, it also depends on the initial tumor
volume. All parameters in the model were similar to the
literature (Ionescu et al., 2020; Hong and Zhang, 2019;
Talkington and Durrett, 2015). For all three cases, the
total tumor volume and necrotic tumor volume decrease
over the period of 30 days. In the case of the PKPD model,
increasing the necrotic rate led to a decrease in the total



tumor volume. The active tumor cells were eliminated at
a rapid rate due to the high n value, and this resulted
in the decrease of overall tumor volume. A lower value
of γ parameter indicated a more sensitive response to
treatment and led to increasing end tumor volume, being a
monotherapy. Therefore, γ was taken as 0.1, as at higher
values of γ, very low values of total tumor volume were
obtained. The synergy term σ was taken as a default value
of 4. This behavior could be influenced by the use of a
single therapy, instead of combined therapies, thus low to
none synergy. However, the resulting total tumor volume
is lower compared to a more realistic patient response.

3.2 Simulation results for the fractional Gompertz model

Figures 3 and 4 present the results obtained from the
preliminary analysis of the fractional Gompertz model.
The common parameters found in the two models such
as necrotic rate (n=0.1), growth rate (a=0.56), and pa-
tient response (γ=0.1) were maintained at the same value
as that in the PKPD model. The additional fractional
component (f), washout rate (w), and the Gompertzian
parameter (b) were varied from their original values used
in the literature (Hong and Zhang, 2019). Two different
values were envisioned for the f parameter (0.25 and 0.5),
which may potentially capture a better description of tu-
mor growth experienced in clinical practice. Closer inspec-
tion of the figure 4 shows a higher decrease in the tumor
volume results presented for f=0.5, comparable with the
results obtained for the PKPD model. It is apparent from
these representations that the fractional-order parameter
is capable of capturing the natural behavior of respiratory
tissue (Ionescu and Kelly, 2017). As clinical guidelines
predict, radiation-induced effects can influence the tumor
volume to an extent of 3 months, after which the smallest
tumor volume can be seen. Even better results in terms of
smaller tumor volume after 30 days can be observed for
figures 2 and 4 compared to 3. Such a trend may indicate
that smaller f values may successfully describe the realistic
tumor dynamics for more than one month.

In the Gompertzian model, the fractional component f
was added to improve its performance. Two sets of sim-
ulations were obtained for two different values of f=0.25
and f=0.5. The results showed that for the lower value
of f (Figure 3), increased (but more realistic) end tumor
volume is obtained compared to a higher value of f (Figure
4), closer to the clinical results (Vu et al., 2020). For both
values of f , the tumor volume increases accordingly to the
initial tumor volume. However, the initial tumor volume
and the protocol play a significant role in determining the
end tumor volume. Comparison with more patient data
and statistical analysis is part of future work.

Another influencing parameter in the Gompertzian model
is b, with lower values resulting in higher tumor end
volume. The limiting factor b is related to nutrients, or
rather lack of nutrients around the tumor cells. With the
growth of tumor cells, the nutrients gradually decrease
which limits the growth of active tumor cells after one
point. A higher value of b corresponds to a higher growth
limitation, which decreases the total tumor volume. With
radiation therapy, many of the active tumor cells are
destroyed, leaving the surviving tumor cells with more

access to nutrients. This explains the increase in tumor
end volume with a corresponding decrease in b value.

The decrease in washout rate w led to an increase in the
tumor end volume. The washout rate defines the rate at
which the necrotic tumor volume is cleared away from the
tumor site. RT at the tumor site affects the tumor cells,
together with the surrounding healthy cells, even if the
exposure is reduced with SBRT. The washout mechanism
can be affected by high-energy radiation. The rate of
washout is reduced resulting in a much slower removal of
dead tumor cells. The necrotic rate n behavior is different
compared to the PKPD model as increasing the necrotic
rate increased the total tumor volume. This behavior can
be explained due to the presence of washout rate w used
to control the rate of outflow of dead tumor cells. If
the necrotic rate increases, then the dead tumor volume
increases as a part of the total tumor volume. As the
washout rate is quite low, these dead cells are washed away
at a much lower rate, indicating that they are present at
the tumor site for a much longer time.

3.3 Statistical analysis

Results were analyzed using a one-way analysis of variance
(ANOVA). The tests were performed to compare the per-
formance of the presented models, by determining whether
there are statistically significant differences between the
means of the 3 groups. A statistically significant difference
(p-value ≤ 0.05) was apparent for each patient grouping
the three model cases, even if tumor volume decreases with
treatment applied.

The tumor volume reported using CT images on the
treatment simulation day was used as the baseline for
comparison. Taking into consideration the results obtained
from computer simulations, the tumor volume changes
were further examined. The percentage change in tumor
volume (TV), on comparing the values on the simulation
day (TVday0) with the obtained values for 30 days period
including treatment (TVday30), was calculated using the

following formula: TVchange(%) =
TVday30−TVday0

TVday0
. Using

the PKPD model for simulations, the results showed a
tumor volume decrease between 97-99%. By contrast,
the fractional Gompertz model with fractional operator
f=0.25 provides a varied decrease in TV depending on
each patient: 29% (P1-smallest initial TV and second
highest total RT dose), 78% (P2-smallest total RT dose)
and 91% (P3-highest initial TV and total RT dose).

4. DISCUSSION

A high-quality SBRT strategy involves comprehensive
techniques to create a multi-professional development, im-
plementation, and practice of the SBRT (Guckenberger
et al., 2017). Building a multidisciplinary approach may
foster the transition of research to clinical practice by
consolidating the collaboration of researchers and profes-
sionals, both medical and engineers (Lievens et al., 2019).

Currently, treatment scheduling in NSCLC patients re-
mains open field research. The practical working of mathe-
matical equations may result in the prediction of treatment
outcomes carefully using fractionation experiments, com-
parable to real practice. The larger radiation fractions used



Fig. 2. Numerical predictions for tumor growth using PKPD model in Patient 1 (left), Patient 2 (middle) and Patient
3 (right); blue stems represent the total tumor volume, while red stems indicate the necrotic tumor volume.

Fig. 3. Numerical predictions for tumor growth using fractional Gompertz model (with f=0.25) in Patient 1 (left),
Patient 2 (middle) and Patient 3 (right); blue stems represent the total tumor volume, while red stems indicate
the necrotic tumor volume.

Fig. 4. Numerical predictions for tumor growth using fractional Gompertz model (with f=0.5) in Patient 1 (left),
Patient 2 (middle) and Patient 3 (right); blue stems represent the total tumor volume, while red stems indicate
the necrotic tumor volume.

in SBRT produce a reduction in the possibility of tumor
proliferation and repopulation, as well as an increase of
tumor control probability (TCP) (Verellen et al., 2007).
The models comprise patient and disease-specific charac-
teristics capable to qualitatively reproduce tumor growth
response to radiation therapy. Heterogeneous study de-
signs make it impossible to summarize a general conclusion
for changes in tumor volumes with respect to treatment
outcome (Käsmann et al., 2018).

The mathematical models considered for this work require
further fine-tuning of parameters that best reflect all
physiological and biological conditions of the patient.
These findings will be further tested after assessment of
the tumor volume in the same patients, three months after

treatment. This will allow us to compare these encouraging
results in tumor dynamics with real data, by extending
the simulation time to 90 days. Unfortunately, the clinical
protocols usually require that a CT scan have to be
performed 3-6 months after the delivery of the last dose
of radiotherapy, limiting the radiation exposure for the
patients compared with monthly CT scans.

The models are not capable of reflecting the tumor increase
during treatment due to inflammation. Both a decrease
and an increase in inter-fractional tumor volumes have
been previously reported in different studies (Vu et al.,
2020). Rapid tumor volume decrease is expected during
SBRT or immediately after, due to the tumor’s sensitivity
to radiation. But an increase in tumor volume can be



a reflection of inflammation that occurred at the site of
administration.

Another study limitation is the finite number of patients.
We need a larger cohort of patients to validate the pro-
posed models for the same treatment strategies. Our pri-
mary purpose was to investigate the changes in parameters
according to tumor volume and dose fractionation. Further
research is needed to optimize the modeling approaches
for reflecting the tumor decrease according to clinical data
acquired during a follow-up visit for an increased number
of patients. Even so, extended research will consider a
much larger period of time to update the model parameters
and validate the predictive values to real clinical data for
most-used clinical strategies in SBRT.

5. CONCLUSION

In this paper, we derived clinical-based solutions for two
different tumor growth models. The choice of the model
can lead to similar prediction outcomes but vary signif-
icantly with the change in parameters. We have investi-
gated a novel fractional Gompertz model and a PKPD
model scaled up for NSCLC patients treated with conven-
tional SBRT schemes. According to the simulation results
for the particular clinical data used, the models were able
to characterize the tumor dynamics in a 30 days simula-
tion. Therefore, the lung tumor volume observed following
SBRT administration is decreasing for all simulations.
With tumor volume values too close to 0 after one month
for part of the simulations, the fractional Gompertz model
permits changes in tumor volume to more realistic values
due to the inclusion of the fractional parameter.

The extension of this study will include modeling concur-
rent therapies, increasing simulation time, and analysis of
more patients treated with the same SBRT scheme or total
dose of radiation.total dose of radiation. Therefore, the
synergy between treatments can be further validated and
explored using both models and their performance can be
evaluated. Of particular clinical interest is the assessment
of the effect of radiation on neighboring healthy cells
and tissue. Furthermore, prediction of radiation-induced
toxicity can be achieved to identify optimum radiation
administration schedules. The extent and impact of this
research should be dispersed over an enlarged period of
time to quantify and validate the approach.
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