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Abstract: In this paper we explore the effect of the number of daily tests on an epidemics control
policy purely based on testing and selective quarantine, and the impact of these actions depending on the
time their application starts. We introduce a general model incorporating a stochastic disease evolution,
a particular weighted graph representing the population, and an optimal contact tracing strategy to
allocate available tests. Simulations on a community of 50’000 individuals show that the evolution of
the epidemic produces a clear non-linear response to the variation of the number of tests used and to
the starting time of their application. These results suggest that not only a minimum number of tests is
necessary to obtain a positive outcome from the tracing strategy but also that there exists a saturation
on the contribution of additional tests. The results also show that the timing in the application of the
measures is as important as the measures themselves and that an excessive delay can be hardly overcome.
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1. INTRODUCTION

Since the start of the COVID-19 epidemic, many researchers
and governments have studied the use of different strategies
to ensure health safety while trying to lower the social costs
associated to these measures (Viner et al., 2021). In this re-
gard, the use of total lockdowns is currently seen as a last
resort, backed by studies showing their harm not only to econ-
omy (Joshi et al., 2020) but also to mental health (Rossi et al.,
2020). Generally, efficient strategies can be described as the
ones that allow the containment (or total eradication if possible)
of the epidemic while maximizing the social, economical, and
psychological conditions of the citizens. These results can be
achieved by applying focused measures, e.g. targeted quaran-
tine. However, due to the relevant number of asymptomatic and
pre-symptomatic transmissions of COVID-19, their effective-
ness strongly depends on the testing (Matukas et al., 2020).

Accordingly, during the first stages of the COVID-19 epidemic,
before the production of any vaccine, one of the main limiting
factors to better handle the spread of the disease was precisely
the limited number of available tests. This issue made the
testing and tracking of the population an obvious problem of
resource allocation concerning the use of available tests and
associated quarantine policies.

Mostly sparked by the COVID crisis, the scientific community
has produced a number of works tackling the problem of how
to use efficiently a limited number of tests and how to design
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the associated control policies. Berger et al. (2020) propose
a policy based on conditional quarantine and random testing.
Kasy and Teytelboym (2020) present a trade-off strategy be-
tween quarantine and testing which is implemented by defining
a threshold based on the infection probability and related to the
cost of testing or quarantining an individual. Niazi et al. (2020)
compute the number of tests that has to be used each day in
order to minimize the peak of active cases. Ely et al. (2021)
study how to allocate different kinds of tests with different ac-
curacies in order to minimize a user-defined social-economical
cost. Pezzutto et al. (2021) propose to test individuals based on
an approximate estimation of the probability of being infected.

Following WHO indications, during the COVID19 pandemic
most countries implemented similar contact tracing strategies.
Contact tracing has been proved to be very effective in some
countries (Kendall et al., 2020) but insufficient in others (Todd,
2020; Baker et al., 2020). Recent works have explored the limits
and feasibility of contact tracing. For instance, Hellewell et al.
(2020) show through mathematical modelling that for a basic
reproduction number of 2.5, in the idealized situation where
asymptomatic individuals do not transmit the infection, at least
the 70% of contacts of a known positive have to be tested.
Similar outcomes have been obtained by Bradshaw et al. (2021)
where it is suggested that bidirectional tracing is essential
to overcome the lack of perfect knowledge of the contacts.
Moreover, Ferretti et al. (2020) show that without a quick and
accurate contact tracing the control of the epidemic with no
additional measurements is unfeasible.

The aforementioned works provide useful insights on the capa-
bilities and weaknesses of contact tracing. However a number
of important aspects have not been considered, yet. Firstly,



existing works do not explore the relationship between number
of tests carried out daily and the expected epidemic evolution.
Secondly, the effects of the starting time of the testing campaign
are usually not taken into account.

In order to evaluate these aspects, the first step is to select
an adequate model to monitor the evolution of the epidemic.
As shown by several new models tailored for the COVID-
19 case (Giordano et al., 2020), compartmental models have
been proved to provide accurate results on the evolution of the
epidemic. However, compartmental models assume by nature
a population homogeneously distributed in which individuals
are randomly mixed. This assumption however does not inform
about the granular distribution of the disease and might be a
problem when evaluating aspects involving the spatial distri-
bution of a population in an epidemic, which is a fundamental
aspect of contact tracing strategies.

We believe that to model the granularity of the transmission of
a disease, network diffusion models provide a better description
of the distribution of the population and allow the identification
of critical clusters of the spreading. Several works present in the
literature apply this idea to complex network topologies (Keel-
ing and Eames, 2005; Li et al., 2014). In these models, the
population is represented by a graph where the individuals are
the nodes and their interactions are modelled by the edges of
that graph. This representation allows to model selective testing
and quarantine policies, e.g. by removing the connections of
certain individuals with the rest of the population (Nowzari
et al., 2015), as well as time-varying interactions. However,
these works usually consider unweighted graphs, so that the
underlying assumption is that all the interactions have the same
probability of transmitting the disease. This approach works
well for certain applications but it is not able to capture the
differences between interactions that are fundamental in order
to implement contact tracing strategies. In fact, not all contacts
of a known positive have the same probability of being infected
and, when the number of tests is limited, it is important to
distinguish between close and distant contacts.

In this paper, we introduce a general model based on a heteroge-
neous complex network of interactions to study contact tracing
policies against COVID-19. More specifically, the infectious
progression is represented through three logical states Suscep-
tible, Infected, and Removed. The population is modelled by
a weighted graph whose weights are set as the probability of
transmission of the disease, and the contact tracing strategy is
formulated as an optimal allocation problem. We study, through
accurate simulations, the effects of contact tracing for a same
population in function of the number of tests and of the timing
at which the policy is initiated. The aim of this paper is to
provide some insight on the use of contact tracing strategies in
non-homogeneous structures similar to real population distribu-
tions. In particular we show how the evolution of the epidemic
produces a clear non-linear response to the variation on the
number of tests used and to the timing of the application of
the measures. We believe that these results present important in-
sights and guidelines concerning the management of epidemics.

The paper is structured as follows. In Section 2 we introduce
our epidemic model together with the modelling of a contact
tracing policy. Section 3 provides several simulations and dis-
cussions for different number of tests and for different dates
of applications of the measures. Section 4 concludes the paper
with a discussion of the results and on future works.

2. MATERIAL AND METHODS

2.1 Disease Model

Consider a population of N individuals where a disease is
spreading. For each fixed day t, to each individual i it is
associated a logical state ξi(t) ∈ {S, I,R} defined as

• S - susceptible, the individual is healthy and was never
infected before, so it is susceptible of being infected;
• I - infected, the individual is infected and can infect others;
• R - removed, the individual cannot be infected because it

was infected in the past.

We introduce the transmission variable Tji(t) ∈ {0,1} which
takes the value Tji(t) = 1 if the infection is transmitted from j
to i between day t and day t +1 given that the individual j was
infected and the individual i was susceptible. Mathematically,
Tji(t) is a Bernoulli random variable with mean w ji(t), where

w ji(t) = P(ξi(t +1) = I|ξi(t) = S,ξ j(t) = I) . (1)
We assume that Tji(t) is independent of Tmn(k) ∀m,n,k 6=
i, j, t and of the initial state ξn(0) ∀n. The mean values are
symmetric, i.e. wi j(t) = w ji(t). For any pair i, j of individuals
that have no contacts wi j(t) = 0.

We denote with ui(t) ∈ {0,1} the binary stochastic input rep-
resenting the stochastic contagion event at day t. This variable
takes the value ui(t) = 1 if the individual i has been infected
between day t and day t +1, and ui(t) = 0 otherwise. Based on
the description of Tji(t), the variable ui(t) is defined as

ui(t) = 1− ∏
j :ξ j(t)=I

(1−Tji(t)). (2)

Note that ui(t) can be equal to 1 even if ξi(t) = I or ξi(t) =
R. However, in that case, ui(t) has no effect on the state of
individual i.

The recovery is also modelled as a random variable to capture
the uncertainty of the recovery process. We denote as ri(t) ∈
{0,1} the binary stochastic variable representing the stochastic
recovery event at day t. This variable takes value ri(t) = 1 if
the individual i becomes removed between day t and day t +1,
and ri(t) = 0 otherwise. We model ri(t) as a Bernoulli random
variable with mean λi constant over time. Moreover, ri(t) is
independent of r j(k) ∀ j,k 6= i, t, of Tmn(k) ∀m,n,k, and of the
initial state ξn(0) ∀n.

The state of each individual evolves as follows

ξi(t +1) =



S if ξi(t) = S and ui(t) = 0
I if ξi(t) = S and ui(t) = 1

or if ξi(t)= I and ri(t) = 0
R if ξi(t) = I and ri(t) = 1

or if ξi(t) = R.

(3)

The state evolution of each individual is depicted by Fig 1.

We assume the system to be partially observable as symp-
tomatic individuals are only a small percentage of the infected
population. The appearance of symptoms is modeled as a binary
stochastic variable denoted by ei(t)∈ {0,1}. This variable takes
the value ei(t) = 1 if the individual i is infected and shows
symptoms between day t and day t+1, and ei(t) = 0 otherwise.
We model ei(t) as a Bernoulli random variable with mean θi
constant over time. We assume that ei(t) is independent of e j(k)
and of r j(k) ∀ j,k 6= i, t, of Tmn(k) ∀m,n,k, and of ξn(0) ∀n.



S I RR

ui(t) = 0 ri(t) = 0 ∀t

ui(t) = 1 ri(t) = 1

Fig. 1. Evolution of the state ξi(t) of individual i.

This model can be easily extended to include other states of
the infectious progression, e.g. Exposed, regarding individuals
that are infected but are still not infectious nor detectable
through tests, as well as other phenomena like the probability
of rebecoming Susceptible after a Recovery. Please refer to
Giordano et al. (2020) for a general set of possible states
modelling the COVID-19 evolution.

2.2 Population model

Based on the proposed transmission model, the population
can be represented through a weighted undirected time-varying
graph G(t) =<V,E(t)>, where each node vi ∈V represents an
individual, an edge between two nodes (i, j) ∈ E(t) represents
an interaction between the individuals i and j at day t, and the
weight is set equal to the probability of transmission wi j(t).

Contrary to usual models of epidemic spreading over complex
networks, the presented population graph is weighted, which
allows the distinction between close and distant contacts. In this
regard, while network topologies that capture the presence of
connections between individuals have been widely studied, to
date, how to model the weight of these connections is still an
open problem. In this work, we propose a multi-layer structure
resembling the population structure. A layer Ln is defined as a
set of disjoint, complete, weighted sub-graphs, i.e. Ln =

⋃
k Gn

k
where, for any k, Gn

k is a weighted graph Gn
k =< V n

k ,E
n
k >

with V n
k ⊂ V ,

⋃
k V n

k = V , V n
k ∩V n

` = /0, and wn
i j > 0 for any

i, j ∈ V n
k . Each graph in each layer is randomly generated.

In this work, each set V n
k is obtained by random extraction

without replacement from V , the size is obtained from an
integer uniform random variable, so |V n

k |∼ U ([Nn
min,N

n
max]),

and the weight is obtained from a real-valued uniform random
variable wn

i j ∼U ([wn
min,w

n
max]) for (i, j) ∈ En

k . Layers are then
combined as G =

⋃
n Ln with weights wi j = 1−∏n(1−wn

i j).
Finally, the graph G(t) has the same topology of G and weights
wi j(t) = wi j if neither i nor j are in quarantine at day t, and
wi j(t) = σwi j otherwise, where σ ∈ [0,1) is a suitable scaling
factor. In this way, quarantine is not an additional state of the
individual but it is captured by the edge weight.

Note that, at each layer, sub-graphs can consist of only one node
if Nn

min = 1, i.e. some nodes may not have any connection on
some layers. With this model, by opportunely setting the param-
eters Nn

min, Nn
max, wn

min, wn
max, it is possible to model different

kinds of interaction: for instance, the layer of households can be
modelled through a small Nn

max (e.g. around 6), and with a high
(w.r.t. other layers) wn

max. Layers with Nn
max = 2 can be used to

model completely random connections. In line of principle, also
other distributions of |V n

k | and wi j can be chosen. Moreover,
thanks to this layer structure, more complex time-varying com-
binations of sub-graphs can be considered. In particular, it is
possible to model the fact that interactions between individuals
(partially) change on a daily basis by appropriately activating
only some of the sub-graphs.

2.3 Control action: contact tracing and quarantine

In this work, we consider the case where the control of the
system is carried out through testing of individuals and targeted
quarantine actions. In particular, we assume that a finite number
T of tests is available each day. We consider tests for current
infection, like PCR tests, namely tests whose outcome indicates
if the individual is infected or not, while it is not possible to
distinguish between susceptible and recovered. Based on the
high accuracy of PCR tests for COVID-19, we assume that the
tests are ideal, so neither false positives nor false negatives are
present. Quarantine is based only on the test outcomes, i.e. only
individuals that have been tested positive or close contacts of a
known positive are quarantined, while generalized lockdowns
are excluded. We assume that also quarantine is ideal, so
infections from (and to) individuals that are in quarantine are
excluded.

We introduce the binary selection variable αi(t), that is equal to
1 if the individual i is tested at day t and 0 otherwise. In order
to mathematically describe the control action, we introduce the
following sets. Let Tt1:t2 be the set of individuals tested from
day t1 and day t2

Tt1:t2 = {i : ∃τ s.t. αi(τ) = 1, t1 ≤ τ ≤ t2}.
Let Dt1:t2 be the set of positive detected from day t1 and day t2

Dt1:t2 = {i : ∃τ s.t. αi(τ) = 1 and ξi(τ) = I
OR ei(τ) = 1, t1 ≤ τ ≤ t2}.

For the sake of simplicity, we denote Tt:t = Tt and Dt:t = Dt .

Test allocation is based on the tracing of relevant contacts
of positive detected individuals. We now introduce a general
model to describe this mechanism. We assign to each pair of
individuals i and j a correlation metric at day t defined in
general as

ωi j(t) = f (wi j(t), . . . ,wi j(0)) (4)
where f :Rt→R is a suitable function. Then, at day t, available
tests are allocated to individuals with the highest correlation
metric with the individuals detected the previous day. The
resulting optimal allocation problem, referred to as optimal
contact tracing, is mathematically formulated as

α(t) =argmax
α

∑
j∈Dt

N

∑
i=1

αiω ji(t)

∑
N
i=1 αi ≤ T (5)

i /∈ Tt−∆T :t

i /∈ D0:t

where α = (α1, . . . ,αN), αi ∈ {0,1} for any i, T is the number
of tests available, and ∆T is a suitable time window.

This model can capture the rudimentary contact tracing imple-
mented in most countries. In particular, f (·) can be fixed as an
indicator function that is equal to 1 if ŵi j(τ)> w for at least a τ

in t−∆< τ < t, where ŵi j(τ) is a rough estimate of wi j(τ). Dif-
ferently, in a ideal scenario, wi j(τ) is known (possibly through
advanced contact tracing apps) and more elaborated functions
f (·) can be proposed. In particular, in this work, we consider

f (wi j(t), . . . ,wi j(0)) = 1−
t

∏
τ=t−∆

(1−wi j(τ)). (6)

where ∆ is a suitable time window. Clearly, the detection
capabilities of the test allocation policy strongly depend on the
function f (·).



Quarantine is driven by the outcomes of the tests or known
symptomatic individuals. In particular, for each i ∈ Dt , we
consider to put into quarantine the L individuals for which the
correlation metric ωi j(t) is the highest and that have not been
detected in the past, i.e. j /∈ D0:t , as they are either already in
quarantine or known removed individuals. Mathematically, if
individual j is in quarantine, wi j =w ji = 0 for any i. We assume
that quarantine lasts for ∆Q days without a test on exit.

Based on the policy above, the closest contacts of each detected
individual are both quarantined and tested. However, when the
number of new detected is high, less contacts can be tested:
in particular, if L > T/|Dt |, some individuals are quarantined
but not tested. In that case, quarantine is implicitly used to
overcome missing tests. Note that, in this setup, also individuals
that are negative but close contacts of a positive are quarantined.
This is a common preventive measure in many countries. Note
that, in the presented setting, also time-varying number of daily
tests can be considered.

3. SIMULATIONS AND RESULTS

The simulations are carried out for a closed population of
N = 50′000 individuals. We study two cases: the variation in
the number of tests and the variation on the time of application
of the measures.

The disease model parameters are set as λi = λ = 1/14 and
θi = θ = 0.0175. They correspond to an average recovery time
of 14 days and an average value of 20% of infected individuals
that show symptoms during the course of the infection. This
value estimates that a high percentage of infected is asymp-
tomatic (Petersen and Phillips, 2020) and that not all symp-
tomatic individuals communicate their state.

The graph representing the population is modeled using 5 main
layers: L1 represents households, L2 represents coworkers,
while L3,L4,L5 represent small groups of friends. We set

N1
min = 1, N1

max = 8, w1
min = 0.75w, w1

max = 1.25w

N2
min = 1, N2

max = 40, w2
min = 0.25 ·0.75w, w2

max = 0.25 ·1.25w
Nn

min = 2, Nn
max = 8, wn

min = 0.2 ·0.75w, wn
max = 0.2 ·1.25w

for n = 3,4,5 for a given parameter w. Other random inter-
actions with average weight of 0.1w are added. We propose
to set w such that the epidemic evolution with T = 0 fits the
evolution of SIR model with basic reproduction ratio R0 =
2. The value chosen aims at reproducing the spread of the
COVID-19 when only very basic social distancing measures are
adopted (D’Arienzo and Coniglio, 2020).

Test allocation is based on the contact tracing formalized in Sec.
2, with ∆ = 15. The quarantine policy is set to the quarantine of
L = 5 individuals per positive test for ∆Q = 14 days.

Initial conditions ξ (0), i.e. which individuals are initially in-
fected, are stochastically generated in each simulation. Each
simulation assumes that 0.05% of the population is initially
infected. It is also assumed that not all connections between
individuals are known in the search of closed contacts and that
an average of 10% of contacts is completely unknown.

Simulations cover a time span of 300 days. The depicted data
correspond to the averaged results of 100 simulations per-
formed for each scenario. In each simulation, the initially in-
fected individuals and the structure of the network are randomly
generated.
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Fig. 2. Evolution of the number of active cases.
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Fig. 3. Evolution of the number of people in quarantine.
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Fig. 4. Evolution of the performance of contact tracing with
respect to the number of tests.

3.1 Variation in the number of tests

To study the variation with respect to the number of tests, we
assume a testing capacity within the range of 0.1% up to 0.5%
of the population daily tested. The upper limit is obtained based
on the values reported by South Korea or USA in December
2020, https://covidtracking.com/data.

Figure 2 depicts the evolution of active cases. This plot shows
the great difference in effectiveness when the number of daily
tests decreases to 100 (0,2% of the population). In particular,
the figure depicts the high non-linearity in the performance
of a strategy like contact tracing. While the outcomes of the
simulations between 150 and 250 tests (0.3% and 0.5% of
the population, respectively) are almost identical, a reduction
to 100 or 50 tests (0.2%− 0.1%) suddenly degenerates to a
situation that is out of control.

The evolution of the number of people in quarantine is depicted
in Fig 3. It is worth to note that the use of more tests, which
provides a lower number of cases, does not require a higher
number of quarantined individuals as the spread of the infection
is never out of control.



The evolution of three important indicators, i.e., peak of active
cases, total number of infected individuals, and total number of
individuals in quarantine, with respect to the number of daily
tests is depicted in Fig 4. It suggests that measures aiming
at improving the test capacity are cost-effective only up to a
”threshold level” (in this case 150 tests/day) after which extra
investments in testing capabilities have a limited effect on the
epidemic.

3.2 Delay on the application of measures

In this subsection we compare the evolution of the epidemic
when the same measures (same strategy and testing capacity)
are applied with different time delays. Simulations consider the
same number of available tests, i.e. 250 per day (0.5% of the
population), a number of tests that in the first subsection has
been proved to be very effective. With respect to the timing
of application, the scenarios go from no delay of action up to
50 days of delay w.r.t. to the appearance of the first infected
individual.

In Fig. 5 we can observe the evolution in the number of active
cases for the different scenarios. It can be seen that, in the case
of 30 days of delay, the peak of active cases already surpasses
the 500 infected individuals and it stays around that level for
more than 100 days. This result shows that, even with a high
number of daily tests, an excessive delay in the application of
measures can dramatically affect the situation during various
months. The previous subsection showed that 250 daily tests
for the simulated conditions provided very good results and that
a high efficiency in the control actions was already reached by
150 tests per day. However, even with this high margin in the
testing capacity, Fig. 5 reveals that if the delay reaches 30 days,
the peak of actives cases becomes very high.

Figure 6 shows the temporal evolution of the number of people
in quarantine for the different cases. This plot shows the great
number of people that needs to be quarantined after a late
reaction despite the targeted approach of contact tracing.

To provide a better visualization of the effect of the delay, the
evolution of the performance of the strategy with respect to
postponement in the application of the measures is depicted in
Fig. 7. From this figure it is clear that there exists a breakout
point where all 3 indicators drastically increase, suggesting that
the delay is too high to be compensated by the applied strategy.

3.3 Discussion of the results

A first important aspect that can be deduced from the simu-
lations is that more testing does not necessarily imply more
people in quarantine. In fact, the number of individuals in
quarantine is much more influenced by the number of infected
individuals than by the number of daily tests. Accordingly,
testing more does not only imply to control better the epidemic,
but also to limit the damage of the epidemic on the social and
economical life of citizens.

Focusing on the response to the variation in the number of
tests, it is very interesting to observe that this response is
clearly non linear. It can be seen how a very small variation in
the number of daily tests, with the same strategy and tracing
knowledge, shows a rapid shift from situation under control
to explosion in the number of cases. This high sensitivity to
the number of tests and to the tracing capacity could explain
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Fig. 5. Evolution of the number of active cases.
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Fig. 6. Evolution of the number of people in quarantine.
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Fig. 7. Evolution of the performance of contact tracing with
respect to the delay in the application of the measures.

the high variance observed in the outcome of similar strategies
in different countries around the world. Additionally, the fact
that there is a point where the contribution of additional tests
becomes negligible suggests the existence of an optimal point
regarding the number of tests and their efficiency in a contact
tracing strategy.

For what concerns the effect of the delay in the application of
measures, it must be noted that the delay is computed starting
from the moment the first infected case appears in the popula-
tion. Of course in several real-world scenarios it is unrealistic
to have no delays, as decision makers must have the time to
realize the situation, decide and communicate the policy to
follow, and organize the logistics to implement it. However, this
analysis gives a quantitative measure of the importance of mak-
ing these operations as fast as possible and, whenever possible,
to anticipate them before the actual outbreak, as every single
day of delay counts. Along this line, these results encourage
to maintain an aggressive contact tracing strategy also after a
generalized lockdown, when promising indicators may entail
less efforts in preemptive measures, or when vaccines start to



be less effective, due to new variants or because the immunity
wanes.

Regarding the numerical simulations performed in this paper,
it must be mentioned that the model used simplifies the period
of incubation of the virus with respect to more complex models
and considers a time-invariant use of the layers of the network.
However, we believe that the graph-based network structure and
the stochasticity of the model provide a realistic outcome and
account for the high variability in the spreading and impact of
the epidemic.

4. CONCLUSIONS

In this paper we provide a mathematical approach to model
contact tracing and simulate its effect on a inhomogeneous
population. We also analyze the efficiency of this kind of
strategies with respect to the number of tests and the timing
of application based on simulations on a realistic network. The
results obtained in this paper suggest two very interesting facts:
i) the evolution of the epidemic presents a clear non-linear
response to the variation on the number of daily tests, and ii)
the timing of application of the testing policy is as important as
the policy itself.

We believe that these results can be helpful to understand
the variation on the outcome of tracing strategies in different
countries and at different moments of the pandemic.

Future works will focus on trying to mathematically define, if
possible, the evolution of the epidemic based on the number of
tests and the topology of the network. Additionally, a future line
of research includes the improvement of the presented network
model. The aim is to be able to adapt this model to more
complex considerations regarding the transmission of a disease
in order to obtain even more meaningful results.
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