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Abstract: This work aims to study postsurgical trauma modeling to characterize the physiolog-
ical process in postoperative pain assessment in an observational trial. The skin impedance data
is proposed to be fitted by derived-Cole models, i.e., single and double dispersion models and a
distributed model with an inductive term related to sweat glands. These models are motivated
by the biological characteristics of the skin, its physiological stratification and the current intra-
and extra-cellular pathways. The correlation between the identified parameters with the patient’s
pain reported using the numerical rating scale (NRS) is analyzed for one patient for all three
models. Following the trial, a statistically significant positive linear relationship was observed
between the Anspec-Pro index and NRS (r? = 0.16, p=0.00), driving the further study of
the relationship between the estimated dielectric parameters. The paper focuses to analyze the
changes of the coefficients related to the particular clinical data, successfully identified using
the non-linear least square procedure. The clinical significance of the results may be related to

the individual model parameters for postoperative pain detection, validated on patients.

Keywords: fractional order impedance model, Cole model, non-invasive pain monitor,

bioimpedance, postoperative pain

1. INTRODUCTION

More than 80% of the patients suffer from postoperative
pain in postanesthesia care units (PACU) (Rawal, 2016).
The persistent postsurgical pain prevalence reaches 30-
50%, originating from unsatisfactory acute pain manage-
ment (Luo and Min, 2017). Therefore, pain management,
especially after surgical procedures, is essential as it pre-
vents the progression from acute to chronic pain or long-
lasting disabilities (Lavand’homme, 2011).

One way to achieve better pain management is by inte-
grating pain monitors in clinical practice, which provides
both clinicians with the opportunity to objectively assess
pain and opioid delivery and patients to have a better
experience from less pain after surgery (Lavand’homme,
2011). To date, several commercialized monitors have been
indicated for objective pain assessment in PACU or analge-
sia levels for perioperative use (Ghita et al., 2020b). The
principle of most of these tools is based on changes in
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the autonomic nervous system in response to stimuli or
surgical tissue trauma. The devices monitor correspond-
ing modifications in biomarkers such as electrodermal
activity, pupil reflexes, heart rate, and blood pressure
(Ledowski, 2019). Even if biomarkers that indicate the
biological and pharmacological process can be subjectively
measured (Cowen et al., 2015), monitors that combine
these biomarkers with biopotential outputs are considered
assuring. However, seeking one fundamental physiologi-
cal parameter change is not reliable due to the overlap
between the autonomic nervous system and nociceptive
signaling pathways (Cowen et al., 2015; Tracey et al.,
2019). Additionally, what these biological signals lack is
the analysis in both the time and frequency domain.

A basic understanding of nociceptive response is vital to
good pain assessment, so modeling enables to characterize
the underlying physiological process that pain promotes
(i.e., palmar sweating, stress hormones releasing, and
a complex series of electrochemical events generated at
cells level). In this work, we propose various models
describing anomalous diffusion and dielectric properties of
skin tissue, based on the complex bioimpedance explored
in its full potential: 2D to 3D time-frequency analysis. The



frequency response data acquired in postoperative patients
is therefore used for parametric identification.

On the other hand, behavioral observation scales such
as the numerical rating scale (NRS) are available in PACU
to identify the intensity of pain after surgery. NRS is the
most straightforward, commonly used and standard scale
in daily clinical procedures for patients to describe their
pain intensity, with 0 having no pain and 10 having the
maximum imaginary pain. Hereby, the assessment of pain
mainly relies on the self-evaluation report. Although these
scores are fruitful, they are impossible to obtain in uncon-
scious patients or not reliable in cognitively compromised
patients who cannot verbalize or quantify pain (Lazaridou
et al., 2018). Therefore, the investigation of developing
reliable devices and methods for assessing pain objectively
remains a challenge.

The recently developed device for pain assessment,
namely Anspec-Pro, has enabled the acquisition of skin
impedance for the data-driven modeling proposed in this
paper (Ghita et al., 2020a). The monitor has been suc-
cessfully validated on awake healthy volunteers undergoing
induced pain and patients in PACU for detecting the
perception of pain (Ghita et al., 2019; Neckebroek et al.,
2020). The device and its related methodology detect
active nociceptive stimulation and evoked-pain of post-
surgical trauma by analyzing the frequency-modulated
bioimpedance measured in the hand palm. The availability
of the complex skin impedance frequency response trig-
gered the application of data-driven electrical models in
the present and previous works (Copot and Tonescu, 2018).
This paper brings innovation through the mathematical
modeling of time-frequency changes in skin impedance
values specifically for post-trauma-related pain. These
electro-chemical variations reflect alterations throughout
the pain signaling pathway, as a response to the multi-
frequency excitation signal applied by Anspec-Pro.

Consequently, this paper proposes three electrical mod-
els to characterize the physiological changes in skin
impedance with mathematical tools. The potential of
single- and double-dispersion Cole models and distributed
inductive Cole model are investigated. The working hy-
pothesis is that the identified parametric models are cor-
related with the NRS value reported by the patient for
evaluation of its postoperative pain every 7*" minute. The
bioimpedance data was collected from patients included in
an observational study during the PACU period, initially
reported in Neckebroek et al. (2020).

The methodology of the trial and the electrical models
followed by statistical analysis are presented in section 2.
Next, in section 3, the obtained results from both pain
monitors and the comparison between the three models
are indicated and discussed. Finally, the work is concluded
in section 4.

2. MATERIALS AND METHODS
2.1 Postoperative clinical data

Participants.  The trial was a cohort study performed at
Ghent University Hospital, Belgium (identifier on clinical-
trials.gov: NCT03832764; principal investigator: Martine
Neckebroek), approved by the Ethics Committee (protocol
code: EC/2017/1517). Patients who needed potent analge-
sia during surgery were selected from a list of the patients
who planned to have a surgical operation.

Patients between the age of 18 to 75 years old that
could understand and sign the written informed consent
document for participation were included. Exclusion cri-
teria were related to patients (i) having epidural analgesia
infused by a pain pump, (ii) having chronic pain or getting
medication used for chronic pain, (iii) having participated
in a clinical trial within the past 30 days, (iv) having
the operation planned at one of the upper limbs (so that
placing together the blood pressure cuff and the electrodes
of the pain monitor at the same upper limb would not be
possible), (v) staying in daily hospital or Intensive Care
Unit and (vi) pregnant women.

Patient selection was based on a randomized list as-
signed to two pain monitoring devices, namely Anspec-Pro
and Medstorm. Therefore, the cohort study was conducted
with 26 patients, 13 patients allocated to Medstorm and
13 patients to Anspec-Pro. However, for Anspec-Pro, one
patient was excluded as the data acquired from the patient
was incomplete. Hence, the total number of 25 patients was
fully considered for this work.

Data collection.  The study design consisted of two
periods of monitoring: preoperative and postoperative. In
the preoperative period, in the waiting room, the pain was
assessed by NRS and by the pain monitor for 14 minutes.
After this step, the surgery was performed according to the
standard clinical procedures while the pain device did not
monitor the patient’s pain. In the postoperative period, in
PACU, the pain was also measured by NRS (self-report
or nurse evaluation at every 7 minutes) and by the pain
monitor, continuously for 140 minutes. For patients who
were still unresponsive, the nurses assessed the NRS value.
It should be noted that the time interval of 7 minutes
has been selected together with the clinical investigator
as an optimal interval for pain assessment. During the
monitoring periods, the patients’ heart rate (HR) and
mean arterial pressure (MAP) were also registered for
further statistical analysis. Biometric data such as age,
weight, height, and body mass index (BMI) were noted
before the trial.

The used pain monitor devices in the trial were Anspec-
Pro (Ghent University, Ghent, Belgium - only for re-
search use), and Medstorm (Med-Storm Innovation, AS,
Oslo, Norway). Both devices non-invasively measure the
nociception level by placing three electrodes at the palm
hand. The palm is considered a suitable place for detecting
tissue dynamics due to changes in electrical permeability.
Medstorm principle is based on measuring the number of
fluctuations of skin conductance (NFSC) after inducing a
single-frequency current as an input. In contrast, Anspec-
Pro measures the bioimpedance response of the skin after
multiple-frequency current input, allowing the characteri-
zation in the frequency domain. This is valuable because
any biological tissue is frequency-dependent when excited
by an alternating current, generating broader information.

2.2 Electrical modeling of skin impedance

Human skin is a complex tissue whose impedance prop-
erties change with different frequencies (Laycock and Ban-
tel, 2016), deeper skin layers being captured by higher fre-
quencies (Grimnes and Martinsen, 2015). Skin impedance
depends on several criteria such as thickness, skin water
content, and sweat glands. Electrical modeling of the skin
is essential to understand and characterize the nociceptive
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Fig. 1. Electrical bioimpedance Cole models with a. single
dispersion and b. two dispersions.

and applied current pathways. Several models have been
reported for skin impedance estimation with experimental
data (Bora and Dasgupta, 2020). This work proposes the
application of derived Cole models for fitting the clinical
data of postoperative bioimpedance.

Single-dispersion Cole model. The most used model ap-
plied to different measurement techniques of impedance is
the Cole model (Fu and Freeborn, 2020). Single-dispersion
Cole model deals both with conductive and dielectric prop-
erties. It is composed of three electrical components, each
assuming to represent a structure of the human skin. In
Fig. 1a, the general Cole 1-dispersion model is depicted
with a high-frequency resistor R, representing the deeper
tissue, the lower frequency resistor R, and a constant-phase
element (CPE). CPE is a fractional capacitor that can
be expressed as Zopr = ﬁ where a € (0,1], C is the
capacitance, and s = jw. The following term gives the
single dispersion Cole model in Laplace domain:

R
Zest = floo + 14+ RC's« (1)
Double-dispersion Cole model.  Cole with double disper-
sion is an extension of the single-dispersion model, utilizing
two Cole cells. This model demonstrates the impedance
over a deeper layer of the skin and a larger frequency.
In biological media, three main dispersion regions can be
distinguished in the frequency spectrum, i.e., a: 10 Hz-
10 KHz, characteristic for diffusion detection of the ionic
species (extracellular fluid level), 8: 10 kHz-10 MHz for
a dielectric property measurement of the cell membrane,
and v >10 MHz for content measurement of the biological
species (intracellular fluid level) (Neckebroek et al., 2020).
For modeling, only o and S will be considered, so only two
Cole cells are included in the model. The permittivity de-
creases over increased frequency and is directly correlated
with the capacitance. This model with a parallel resistor
(R2) and C PE, in series with single dispersion Cole model
is shown in Fig. 1b, given by:
Ry Ry
1+ RCys™ 14+ RyCosP
with « and 8 dimensionless fractional numbers.
Distributed Inductive Cole model (DIC).  Grimnes and
Martinsen (2015) proposed a skin model, which version
without electrode polarisation is depicted in Fig. 2a. In

our work, we propose a distributed fractional dielectric
model with Cole 1-dispersion and inductive components.

Zest = Roc +
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Fig. 2. Skin impedance models based on a. multiple Cole
systems [14] and b. modified distributed inductive
Cole model (DIC).

In this modified Grimnes model, we include the modeling
of sweat ducts based on RL circuit analogy. Consider the
assembly of an inductor (L) in series with a resistor (R;),
representing the sweat ducts, in parallel with the Cole
1-dispersion model, given in Fig. 2b. The corresponding
impedance function for this electrical model in the Laplace
domain is:

Ry (Rl + LS)
Zest = Ry + (R1 + Ls)(1 4+ RaCs%) + 1t (3)
It should be noted that the units of electrical compo-
nents R,C, L are ), F, and H, respectively. w = 2nf is
the angular frequency in rad/s, with f the frequency in
Hz and j = +/—1 the unit imaginary number.

2.8 Statistical analysis

The statistical analysis was performed using MATLAB
(2020b) and Minitab (2019). The acquired data from the
clinical trial was analyzed for all the patients, while the
identified electrical models were given for one patient in
this work. However, the modeling may be further done
per patient, for a personalized approach.

To demonstrate the correlation between two variables,
linear regression models and correlation and covariance
coefficients were calculated. The linear regression model
was used to investigate if one variable can be predicted
from another variable using the determination coefficient
r2 that indicates the relationship between the indepen-
dent variables with the dependent ones. The correlation
and covariance coefficients were obtained to demonstrate
how much two variables vary relative to each other by
considering the range from -1 to 1. To assess intra- and
inter-variability between outcomes, t-test, ANOVA, and
Tukey post hoc test were performed.

As the sample size was small for the identification of
the electrical models, indicating a not-normal distribution,
the Kunis-Wallis test was performed to observe the sta-
tistical significance. Statistical significance was accepted
for p < 0.05. Additionally, the number of patients (n),
mean (Standard Deviation - SD), median, and confidence
intervals were presented.



3. RESULTS

Patients characteristics are tabled in Table 1. Biometric
data was not significantly different between Anspec-Pro
and Medstorm groups (p > 0.09).

Table 1. Biometric data

Anspec-Pro Medstorm p-

(n=12) (n=13) value
Age (y) 36.66(13.35)  40.30(18.08)  0.28
Height (cm) 167.75(9.68)  173.07(11.68) 0.11
Weight (kg) 71.58(14.29)  75.69(16.92)  0.25
BMI (kg/cm?)  25.37 (4.27) 24.87 (3.60)  0.37

BMI—Body Mass Index

Postoperative variables were registered in PACU. It
should be noted that the pain index measured by each
device has undergone a different method of calculation.
For Medstorm it was registered the outcome number
of the monitor, i.e., the skin fluctuations per second.
For Anspec-Pro, non-parametric identification based on
spectral correlation was used for calculating the complex
impedance from the applied multisine input and measured
skin output (Ghita et al., 2020a). The resulted frequency
response function (FRF) of the dynamical system is then
a measure of the modulus and phase of the output signal
as a function of an input frequency, relative to the applied
signal. Therefore, the FRF allows modeling the unknown
process, i.e. electrical changes originating from pain. For
the Anspec-Pro index extracted in this paper, the complex
impedance is normalized to the BMI of patients.

In Table 2, values are presented in median, the acquired
clinical data consisting of outliers. NRS and pain indices in
Anspec-Pro group were significantly higher than the same
variables from Medstorm group (p<0.001), while the other
two outcomes (MAP and HR) were significantly lower than
Medstorm group (p<0.001).

Table 2. Outcome variables measured in PACU

Variables  Anspec-Pro Medstorm p-value
group (n=12) group (n=13)

NRS 3 (0-8) 2 (0-10) 9.40E-16

HR 68 (40-98) 75 (46-114) 1.64E-10

(bpm)

MAP 85.33 91.66 0

(mmHg)  (63-113) (72.33-116.67)

Pain 1.42 0.07 3.68E-18

index (0.71-38.48) (0-0.73)

NRS—Numerical rating scale, HR—Heart rate,
MAP—Mean arterial pressure

Statistical evaluation.  The linear regression model in
Fig. 3a indicated a statistically positive linear relationship
between Anspec-Pro index and NRS (r? = 0.16,p = 0),
while no significant relationship was observed between
Medstorm index and NRS for the whole group of patients
(r? = 0.4,p = 0.32) in Fig. 3b. Hence, the resulted
correlation motivates the aim of this work to further
correlate the estimated electrical parameters with NRS.
The variability among individuals has been analyzed for
Anspec-Pro index. The results by means of boxplot are de-
picted in Fig. 4. There was no significant difference among
the monitored pain, except in one individual. Anspec-Pro
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Fig. 3. Linear data fitting between a. Anspec-Pro index
and NRS with statistically positive linear relationship,
and b. Medstorm index and NRS with no significant
relationship. The red line shows the regression line,
and the green line limits the 95% confidence interval.

demonstrated a significant negative relationship between
BMI and pain index (Anspec — Pro index = 31.01 —0.98 x
BMI, r? = 18.6%, p = 0.00), and height and pain index
(Anspec — Pro index = 59.77 — 0.31 * height, r*> = 10%,
p = 0.00). We may consider that the individual with a low
BMI and shorter height has a different liquid dispersion in
the whole body that might affect the impedance values.

Model fitting. The impedance data obtained as the FRF
was utilized for the identification of the three proposed
models: single- and double-dispersion Cole and the dis-
tributed Cole DIC. Owing to modern fast calculating soft-
ware such as MATLAB, parameter estimations are feasible
by non-linear least-square fittings with the iterative algo-
rithm Isqgnonlin. The estimated and measured impedance
is then evaluated every minute against frequency for all
patients. In Fig. 5 it is illustrated the frequency response
in complex form (real and imaginary parts) for one minute
extracted from one patient out of the 12 to exemplify the
model fitting.
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Fig. 4. Box plot analysis of inter-patient variability of
Anspec-Pro pain index in all individuals.

(=]

' Oooooqa5630;5556996665636668'
®

n
x

Real Part (Q)

»®

L B L L L L L 1 L L
2
] 1000 2000 3000 4000 5000 6000 7OOO BOOD 9000 10000

®

(=}

L]
T
L

(=)

»
o ®
”300050 So@ooooe
SR R00000R0020RR999929
"

Imaginary Part (£2)
T

4 . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
w (rad/s)

Fig. 5. Impedance data fitting with the single-dispersion
Cole model exemplified for one minute of one patient,
with the estimated (red) and measured (blue) values.

To statistically investigate the correlation between the
estimated impedance by the three proposed models, the
mean of impedance values over 7 minutes was calculated
in order to obtain a comparable number of values with
the self-reported NRS every 7" minute. The result was
an absolute value of the impedance. Kunis-Wallis test for
the individual indicated a significant difference between
the estimated impedance values by the three mathematical
models (p<0.005). In the interval graph (Fig. 6), it can be
observed that the extended lines of confidence intervals of
the Colel model and the others do not overlap, meaning
that the groups are significantly different.

The correlation of the estimated impedance with NRS
was performed to study if there is a significant statistical
relationship with the self-reported NRS. Hence, the clinical
significance may be more important than the accuracy of
the model. For an individual patient, the correlation and
covariance coefficients are shown in Table 3. Upon this
table, the estimated impedance obtained from the Cole
model with a single dispersion indicated a more robust
relationship (r = —0.57, p = 0.008) than two other models.

The correlation of models’ parameters to the self-
reported NRS was further performed to explain the phys-
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Fig. 6. Statistical analysis of estimated impedance for
single-dispersion (Colel), double-dispersion (Cole2),
and distributed inductive (DIC) Cole models. The
Colel corresponding confidence interval (CI) does not
overlap with the others, having the differences in
means statistically significant.

Table 3. Correlation and covariance coefficients
of the estimated impedance Z.5; and NRS

Zest Cole Zeost Cole Zest DIC
1-dispersion 2-dispersion

NRS Cov=-0.1 Cov=0.16 Cov=0.42
Corr=-0.57 Corr=0.09 Corr=0.1
p-value=0.008 p-value=0.7 p-value=0.4

Corr—Correlation coeff.; Cov—Covariance coeff.

iological electrical changes normally assumed to happen
when pain occurs. For Colel model, the resistances for one
patient showed a significant negative linear relationship
with NRS (r? = 41.5 for Re, and 72 = 45.9 for R), while
capacitance term C' obtained a non-significant correlation
(p = 0.09). The coefficients of determination r? express
that almost half of the variation in the models’ parameters
can be explained by NRS values, but in the inverse direc-
tion. This negative relationship may be caused by the fact
that the resistance within skin layers is decreasing when
signaling occurs along the sensitization pathway, related
to the self-reported NRS.

Another direction of this research was to investigate the
inductance term of the modified multiple-Cole model. The
addition of the term L is motivated by the hypothesis
that sweat ducts are better characterized by an RL circuit.
By the electrical analogy of flow in vessels, the electrical
inductance L is similar to the fluid inertia, related to flow
rates. The inertance I impedes the rate of change of flow
rate, being characterized by the formula Ap = I x dq/d¢,
where Ap denotes the pressure difference analog to voltage
and dq the flow rate analog to current in the formulation
of L. Based on these theoretical aspects, the correlation
analysis between NRS and the electrical components of the
proposed distributed inductive Cole model was executed.
Figure 7 depicts a significant negative relationship (r? =
0.33,p = 0.008) between the electrical inductance (L) and
NRS. When sweat flow increases originating from high
pain, the volumetric flow rate is directly proportional to
it, but the inductance decreases.
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Fig. 7. Regression analysis between the identified induc-
tance (L) and self-reported NRS for the distributed
inductive Cole model in one patient.

4. DISCUSSION AND CONCLUSION

The clinical data from 25 patients within a cohort study
was analyzed. The data acquired with Anspec-Pro pain
sensor was estimated using electrical models due to its
capability to detect pain (i.e., better correlation analysis
with the self-reported NRS) and to the availability of the
frequency response of the noxious effects. The innovation
of this approach is that Cole models have not yet been
studied for the nociception pathway. Cole models with
fractional-order capacitance were selected for fitting the
bioimpedance dataset, as fractional tools have previously
proven to model biological phenomena (e.g., diffusion of
substances in the human body, the generation of action
potentials, lung dynamics) (Ionescu et al., 2017; Ghita
et al., 2021; Copot et al., 2017).

The present research is limited in the number of individ-
uals studied, and factors such as postoperative cofounders
(i.e., anxiety) may influence skin electrical properties in
awake subjects. Additionally, our results may not be ex-
trapolated to any category of patients (i.e., different anal-
gesic drugs have been used in PACU). However, the devel-
oped models are uniquely defined for one individual, and
the initialization of model identification utilizing available
methods such as genetic algorithms is recommended.

In conclusion, derived Cole models are applied and iden-
tified for skin frequency-dependent impedance response to
analyze postsurgical acute pain. The proposed mathemat-
ical tools indicate a meaningful clinical potential of the use
of dielectric parameters in the direction of characterizing
the underlying physiological process, based on correlations
with reported pain. Moreover, a personalized identified
model per patient may be able to predict changes in such
a personal experience: pain.
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