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Abstract: One of the most difficult challenges in cancer therapy is the emergence of drug
resistance within tumors. Sometimes drug resistance can emerge as the result of mutations
and Darwinian selection. However, recently another phenomenon has been discovered, in which
tumor cells switch back and forth between drug-sensitive and pre-resistant states. Upon exposure
to the drug, sensitive cells die off, and pre-resistant cells become locked in to a state of
permanent drug resistance. In this paper, we explore the implications of this transient state
switching for therapy scheduling. We propose a model to describe the phenomenon and estimate
parameters from experimental melanoma data. We then compare the performance of continuous
and alternating drug schedules, and use sensitivity analysis to explore how different conditions
affect the efficacy of each schedule. We find that for our estimated parameters, a continuous
therapy schedule is optimal. However we also find that an alternating schedule can be optimal
for other hypothetical parameter sets, depending on the difference in growth rate between pre-
drug and post-drug cells, the delay between exposure to the drug and emergence of resistance,
and the rates of switching between states.
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1. INTRODUCTION

[Shaffer et al. (2017)] describes a new discovery about
state-switching dynamics in V600E-mutated melanoma,
when treated with vemurafenib, a BRAF inhibitor. Pre-
viously, it was thought that drug resistance in cancer
was the result of new genetic mutations, which were then
selected for when the drug killed off all of the other cells.
However, Shaffer et al. discovered a new mechanism of
resistance based on reversible switching between transcrip-
tional states. It was found that cells in the tumor switch
back and forth between drug-sensitive and transient pre-
resistant transcriptional states before being exposed to the
drug. When the drug is administered, cells in the sensitive
state die off, while cells in the pre-resistant state begin
a process in which they become “locked in” to a state
of permanent resistance. This phenomenon was further
studied in [Schuh et al. (2020)] and [Shaffer et al. (2020)].

Given this complex situation, in which permanent drug
resistance is at least partially induced by the drug itself,
it is not obvious how the therapy should be scheduled.
Should the drug be administered continuously? Or in
alternating pulses? And what parameters does the answer
to this question depend on? In this paper, we will introduce
a mathematical model of the state-switching phenomenon
and drug response, and investigate these questions related
to drug schedule optimization.

This has previously been investigated in [Greene et al.
(2019)], which investigated this issue using a two-state
model of sensitive and resistant cells. Greene et al. found
that in some cases, when drug-resistance is partly caused
by the drug itself, an alternating drug schedule can yield
preferable results to a constant drug schedule. Our goal is
to further investigate this issue, using a three-state model
to capture the state-switching dynamics discovered in the
[Shaffer et al. (2017)] experiments.

Please note that although this paper will focus only on
the control problem as it relates to drug-induced resis-
tance, there are several other challenging control prob-
lems related to cancer therapy currently being studied
by other research groups, including managing toxicity
[Paryad-Zanjani et al. (2016)], minimizing negative side
effects [Hadjiandreou and Mitsis (2013)], and combining
multiple drugs [Weiss et al. (2015); Rashid et al. (2018)].

2. PROPOSED MODEL

We have developed the following ODE model to describe
the state-switching phenomenon:
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α(t) =

{
c, timer ≥ θ
0, timer < θ

(6)

S, P , and R are the drug-sensitive state, the transient
pre-resistant state, and the permanent resistant state,
respectively. V is the total number of cells in the tumor.
r is the growth rate for sensitive cells and pre-resistant
cells, which are assumed to grow at the same rate for the
purposes of this analysis. rR is the growth rate for the
permanent resistant cells. K is the carrying capacity. (So
the first term in equations 1, 2, and 3 is a logistic growth
term.)

u(t) is the drug term that takes values as either 0 (OFF)
or 1 (ON). ds is the drug-induced death-rate for tumor
cells. β1 and β2 describe the switching back and forth
between sensitive and pre-resistant states in the absence
of the drug.
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Fig. 1. Tumor cells switch back and forth between sensitive
(S) and pre-resistant (P) states. When the drug is
added, sensitive cells die off, while pre-resistant cells
are reprogrammed to become fully resistant (R).

α(t) represents the transition of cells from the pre-resistant
state P to the fully resistant state R. This transition is
a gradual process that requires some time, and does not
occur instantly upon exposure to the drug. To model this
time delay, we introduced a timer function (equation 5).
The timer function represents the length of exposure of
P cells to the drug. When the treatment term u(t) is
turned on, the timer gradually increases, and when u(t)
is turned off, the timer gradually decays. When the timer
function exceeds a certain threshold θ, the transition from
pre-resistant cells to permanent resistant cells with rate c
starts. a is the growth rate of the timer function, and b is
the decay rate. Figure 2 illustrates the timer function in a
specific ON and OFF treatment plan. As you can see, the
timer function starts growing when the treatment plan is
ON, and starts decaying when the treatment plan is OFF.
In this figure, we supposed θ equal to 0.5, so when the
timer function is above 0.5, α becomes c.

Please see Figure 1 for a graphical representation of this
model.

Fig. 2. The timer function. Parameters value are: a = 0.17,
b = 2a, θ = 0.5. The treatment plan is one cell cycle
ON and one cell cycle OFF.

3. ESTIMATING SWITCH RATES

3.1 Experimental Setup and Computational Technique

As discussed previously, cells within a melanoma tumor
can occupy two transient states: a drug-sensitive state
and a rare pre-resistant state. It is difficult to study the
state-switching dynamics directly, because obtaining the
transcriptomic profile of each cell, through methods such
as RNA-Seq, involves killing the cell, so its state can only
be measured once. However, given the right experimental
data, we can use a computational technique based on the
famous Luria and Delbrück (1943) fluctuation test to infer
the state switching rates.

The original [Luria and Delbrück (1943)] fluctuation test
was performed to investigate whether resistance to T1
phage (a virus that infects bacteria) in Escherichia coli
occurred spontaneously or was induced by the virus. Luria
and Delbrück grew out several cultures of Escherichia coli,
and then exposed each culture to the virus and counted the
number of surviving bacteria in each one. It was thought
that if the resistance mutations were being induced by
the virus, the number of surviving bacteria would follow
a Poisson distribution, with the mean of the number of
survivors being roughly equal to their variance. However,
the results of this experiment showed instead that the
variance in the number of survivors was much greater than
the mean, suggesting that the resistance mutations had
occurred spontaneously prior to virus exposure, and had
not been induced by the virus. Similar techniques, based
on the [Luria and Delbrück (1943)] fluctuation test, have
since been used in [Lu et al. (2021)], [Shaffer et al. (2020)],
[Meir et al. (2020)], and [Bokes and Singh (2020)].

In our case, the goal is to use a fluctuation test to in-
vestigate the rate of switching between transient sensitive
and pre-resistant states, and we will use a computational
technique similar to that used by [Luria and Delbrück
(1943)]. Consider a colony of cells that switch between
sensitive and pre-resistant states. In the fluctuation test
technique, individual cells are isolated from the original
cell population, and each cell is grown out into its own sub-



colony. After some amount of time, the percentage of cells
in the pre-resistant state is recorded for each sub-colony.
Then, the coefficient of variation (CV) for these percent-
ages is calculated across colonies. Slow-switching popu-
lations will tend to have higher CV than fast-switching
populations. The intuition behind this is that each of the
sub-colonies grown from the individual cells will, over time,
converge back towards the steady stead percentages of the
original colony. However, faster-switching populations will
converge back more quickly, leading to lower variation in
the percentages in each sub-colony compared to slower-
switching populations.

The CV of percentages in sub-colonies at some time t can
be approximated with the following equation [Lu et al.
(2021)]:

CV (t) = CV (0)e−(β1+β2)t (7)

CV (t) is the coefficient of variation of the percentages
between sub-colonies at time t, the end of the experiment.
CV (0) is the initial coefficient of variation of the percent-
ages between sub-colonies. β1 and β2 are the back and
forth switching rates. For our purposes, β1 will be the rate
at which sensitive cells switch to being pre-resistant, and
β2 will be the rate at which pre-resistant cells switch back
to being sensitive.

If we know the steady-state percentages of cells in the pre-
resistant state, which we will call p̄, then this equation can
be simplified. First, CV (0) can be computed directly from
p̄. We know that at time t = 0, each sub-colony consists
of a single cell. We can think of each cell as following a
Bernoulli distribution, in which being in the pre-resistant
state corresponds to the output of 1, while being in the
sensitive state corresponds to the output of 0. The CV is
the ratio of the standard deviation to the mean. Since the
standard deviation is the square root of the variance, the
CV can be written as

CV =

√
variance

mean2
(8)

For a Bernoulli distribution with p(1) = p̄ and p(0) = 1−p̄,
we know that the mean of the distribution is p̄, and the
variance is p̄(1− p̄). This is also the case for our Bernoulli-
distributed single cells. So by plugging in the mean and
variance and simplifying, we can write the CV at time
t = 0 as

CV (0) =

√
1 − p̄

p̄
(9)

Also, if we know p̄, then it is possible to compute one of
the switch rates from the other switch rate, leaving us with
one fewer variable to deal with. p̄ can be written as

p̄ =
β1

β1 + β2
(10)

This can be rearranged to write β2 in terms of β1 as

β2 =
β1
p̄

− β1 (11)

So if we are able to get t, CV (t), and p̄ from experimental
data, then we will be left with only one unknown variable,
β1, which we can then solve for and use to compute the

other switch rate β2. Please note that for this analysis,
the unit of time t will be normalized to cell cycle time (the
experiment was run for approximately 20 cell cycles). To
understand the rates in a more intuitive way, we will report
the values of 1/β2, which gives the expected number of cell
cycles spent in the pre-resistant state.

3.2 Shaffer et al. Dataset

Fortunately for us, the original [Shaffer et al. (2017)] paper
we have been referencing so far included data from a
fluctuation test experiment that we can use to calculate
the switching rates. In this experiment, a colony of cells
from the WM989-A6 melanoma cell line was grown. Then,
single cells were isolated from this colony and grown out
into 43 sub-colonies, for a period of approximately 20 cell
cycles. The sub-colonies were exposed to vemurafenib and
the number of resistant clusters was counted for each sub-
colony [Shaffer et al. (2017)].

The experimental protocol used in the Shaffer et al. exper-
iment was slightly different from what our computational
analysis requires, so we will make a simplifying assumption
in order to be able to use the data. The Shaffer et al. fluctu-
ation test recorded the number of resistant clusters in each
sub-colony, whereas our computational analysis requires
the number of resistant cells per sub-colony. So, in order
to proceed with the analysis, we will assume that each
cluster is composed of approximately the same number of
cells. This assumption may not be realistic, so this section
of the paper should be taken primarily as an explanation
and demonstration of the computational method, rather
than as a perfect calculation of the switching rates.

The assumed number of cells per cluster depends on the
value of p̄ (the percentage of pre-resistant cells). This
percentage is not exactly known, but is thought to be
within the range of 1/500 to 1/50 [Shaffer et al. (2017).
So, we will report the switching rate estimates for several
p̄ values in this range.

3.3 Switch Rate Estimation

Given the cluster count dataset from [Shaffer et al. (2017)],
we calculated the value of CV (20) in order to use our
formula to compute the switching rates. CV (20) is the
CV of percentages of pre-resistant cells in the sub-colonies.
However, as noted previously, the dataset gives the number
of resistant clusters, not resistant cells. So to convert
clusters to cells, we make the assumption that each cluster
contains the same number of cells. Then, for each sub-
colony, we multiply the number of resistant clusters by
a constant multiplier, so that the average percentage of
pre-resistant cells will equal p̄. To do this, we must also
assume a value for p̄. So, we will report results for a range
of reasonable p̄ values from 1/500 to 1/50.

Once we have converted the number of resistant clusters
per sub-colony to the number of resistant cells, we then di-
vide by the number of total cells in that colony to give the
percentage of resistant cells. Then, we simply calculate the
CV of these percentages across all sub-colonies, and plug
this number into the formula to calculate the switching
rates. We report the value of 1/β2, which is the expected



number of cell cycles spent in the pre-resistant state, in
order to give an intuitive result.

We bootstrapped this calculation to give a 95% confidence
interval. The results were are shown in Table 1.

Table 1. 1/β2 95% Confidence Intervals

Assumed p̄ Value Expected Cell Cycles in P State
Lower Bound Mean Upper Bound

1/500 5.07 5.101 5.132

1/450 5.147 5.181 5.216

1/400 5.204 5.239 5.273

1/350 5.344 5.375 5.407

1/300 5.438 5.475 5.513

1/250 5.587 5.622 5.656

1/200 5.79 5.832 5.875

1/150 6.006 6.06 6.113

1/100 6.454 6.499 6.545

1/50 7.403 7.467 7.532

4. RESULTS

4.1 Parameter Estimation

To estimate the values of other parameters in our model,
we used data from [Umkehrer et al. (2021)]. [Umkehrer
et al. (2021)] used RAF inhibitors and and MEK inhibitors
to treat C57BL/6 melanoma-bearing mice. Their results
showed the emergence of drug resistance after three weeks.
Based on this data, and assuming p̄ = 1/50, we estimated
the following parameters for our model: r/rR = 3.4546,
d = 70.71, and a = 0.017.

A potential weakness of our methodology is that we
used one dataset to estimate the switch rates, and a
different dataset to estimate the rates of cell growth,
death, and development of resistance. Our goal here was
to ensure we are working with parameter values that are
at least biologically reasonable, and we recognize that
the parameter values estimated from the [Umkehrer et al.
(2021)] data may not perfectly match the true underlying
growth, death, and development resistance rates of the
[Shaffer et al. (2017)] data.

Table 2. Parameter Values

parameter Value unit Description

r 1 [1/cell cycle time]
growth rate for sensitive
and pre-resistant cells

rR 0.2895 [1/cell cycle time]
growth rate for permanent

resistant cells cells

K 109 number of cells carrying capacity

β1 0.00273 [1/cell cycle time]
switching rate from

sensitive cells
to pre-resistant cells

β2 0.13392 [1/cell cycle time]
switching rate from
pre-resistant cells
to sensitive cells

dS 70.71 [1/cell cycle time]
killing rate of sensitive

cells with treatment

α(t) 0.13392 [1/cell cycle time]
switching rate from
pre-resistant cells to

permanent resistant cells

a 0.017 [1/cell cycle time]
growth rate for
timer function

b 0.034 [1/cell cycle time]
decay rate for
timer function

4.2 Optimization

For the optimization process, we ran simulations as fol-
lows. The tumor begins as a single cell and grows until

it reaches a detectable size (which we set at V = 50). At
this point, treatment can be started using either an alter-
nating or continuous schedule. When the tumor reaches a
critical size (which we set at V = 109), it is considered to
have progressed beyond the point of treatment, and the
simulation ends. The goal is to maximize the time until
the tumor reaches the critical size, which we refer to as
Survival Time in the figures.

For the parameters estimated from [Umkehrer et al.
(2021)] (shown in Table 2), assuming p̄ = 1/50, the
optimization process showed that the continuous therapy
schedule yielded the best results. Figure 3 shows the results
for different treatment plans. The color bar in this figure
shows the ratio of the survival time of alternative therapy
to continuous therapy.

Fig. 3. Survival time ratio of alternative therapy to contin-
uous therapy. X axes shows the OFF treatment period
and Y axes shows ON treatment period. (p̄ = 1/50)

Fig. 4. The impact of the various scenario for parameter
set in Table 3. It is clear that the 4 cell cycles ON and
4 cell cycles OFF scenario is the best scenario in this
case.



Table 3. Parameter Values

parameter Value unit Description

r 1 [1/cell cycle time]
growth rate for sensitive
and pre-resistant cells

rR 5 [1/cell cycle time]
growth rate for permanent

resistant cells cells

K 109 number of cells carrying capacity

β1 0.00086 [1/cell cycle time]
switching rate from

sensitive cells
to pre-resistant cells

β2 0.17146 [1/cell cycle time]
switching rate from
pre-resistant cells
to sensitive cells

dS 70.71 [1/cell cycle time]
killing rate of sensitive

cells with treatment

α(t) 0.8573 [1/cell cycle time]
switching rate from
pre-resistant cells to

permanent resistant cells

a 0.049 [1/cell cycle time]
growth rate for
timer function

b 0.098 [1/cell cycle time]
decay rate for
timer function

While the parameter set estimated from the [Shaffer et al.
(2017)] and [Umkehrer et al. (2021)] data yielded a nega-
tive result, we came across other possible parameter sets
for which the alternating therapy schedule did indeed
outperform the continuous therapy schedule, sometimes
to a considerable degree. For example, Table 3 shows a
hypothetical parameter set for which an alternating treat-
ment schedule of 4 cell cycles ON, 4 cell cycles OFF was
optimal (results shown in Figure 8).

Why is it that the continuous treatment schedule is opti-
mal for some parameter sets, while an alternating treat-
ment schedule is optimal for others? We decided to per-
form a sensitivity analysis to investigate this issue further.

4.3 Sensitivity Analysis

In this section, the sensitivity of the optimal treatment to
different parameters will be investigated. Figure 5 shows
the sensitivity of the optimal treatment to r/rR, the ratio
of the pre-drug growth rate to the post-drug growth rate.
As this ratio decreases, the efficacy of the alternating
schedule increases relative to the efficacy of the continuous
schedule. In other words, the faster post-drug resistant
cells grow relative to pre-drug cells, the more likely it is
that an alternating schedule will be helpful, all else held
equal, in order to try to keep the number of resistant
cells down. However, if the post-drug resistant cells grow
more slowly than the sensitive cells, then it may be more
beneficial to use a continuous therapy schedule and end up
with the resulting slow-growing, drug-resistant tumor.

We also investigated sensitivity to the parameter a, which
determines how fast the timer activates the switching from
pre-resistant to permanent resistant. Our model predicts
that the more quickly the timer activates, the more advan-
tageous an alternating therapy schedule will be relative a
continuous therapy schedule. Furthermore, we investigated
sensitivity to the ratio of α/β2. The value of this parameter
shows how fast the transition from pre-resistant to perma-
nent resistant happens in comparison with the transition
from pre-resistant back to the sensitive state. We found
that as this ratio increases, the alternating schedules per-
form better in comparison with the continuous schedule.

Fig. 5. The relation of Survival time ratio of alternative
therapy to continuous therapy with r/rR. The al-
ternative scenario for each point is indicated on the
graph. (parameter values: r = 1, d = 70.71, b = 109,
p̄ = 1/500, β1 = 0.00039, β2 = 0.19604, α = 0.9802,
a = 0.049, b = 0.098)

5. DISCUSSION

In this paper, we proposed a model of cancer drug resis-
tance that includes the transient state-switching dynam-
ics discovered by [Shaffer et al. (2017)]. We then used
a modified fluctuation test method [Lu et al. (2021)] to
estimate the rates of switching between sensitive and pre-
resistant states. We then used melanoma tumor data from
[Umkehrer et al. (2021)] to estimate the other parameters
of our model, and simulated different possible drug sched-
ules to see which schedule optimized the time until the
tumor had reached a critical size in our model.

Using the parameters estimated from data, we had a neg-
ative result: the alternating schedule failed to outperform
the continuous schedule. However, for other hypothetical
parameter sets, the alternating schedule did in fact out-
perform the continuous schedule to a considerable degree.

Due to the heterogeneous nature of cancer, different tu-
mors are often characterized by different mutations and
genomic profiles, and different biological properties. Our
model predicts that a continuous drug schedule is optimal
for some parameter sets, and an alternating drug schedule
is optimal for others. If this prediction is correct, then it is
entirely possible that the optimal therapy strategy could
differ from patient to patient, and from tumor to tumor,
depending on the properties of each individual tumor.

One of the key issues to consider is any difference in growth
rate between pre-drug and post-drug cells. Our model
predicts that if post-drug resistant cells grow more quickly
compared to pre-drug cells, then it may be optimal to use
an alternating therapy schedule to keep the emergence of
resistant cells under control. However, if post-drug cells
grow more slowly compared to pre-drug cells, it may be
optimal to use a continuous therapy schedule.

Other issues to consider are the delay between exposure
to the drug and the emergence of resistance (represented



by the timer function in our model) and rate of transition
of pre-resistant cells to the resistant state relative to the
rate of transition back to the sensitive state. Our model
predicts that smaller time delay between drug exposure
and the beginning of emergence of resistance is associated
with greater efficacy of the alternating therapy schedule
compared to the continuous therapy schedule. Our model
also predicts that the greater the rate of transition to
the resistant state is relative to the rate of transition
back to the sensitive state, the greater the efficacy of the
alternating schedule.

However, as of now, these are only predictions. In the
future, we hope to work with biologist collaborators to test
them in an experimental setting, and to more accurately
estimate model parameters. We also plan to test out
more complex, dynamic alternating schedules, in which
the schedule can be changed during the treatment course
based on variable measurements.
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