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Abstract: Tight glycaemic control (TGC) is a treatment in the intensive care in order to avoid
stress-induced hyperglycaemia. The insulin sensitivity (SI) prediction is an essential step of the
best performing, clinically applied so-called STAR (Stochastic-TARgeted) TGC protocol. Pre-
vious results showed performance improvement of the SI prediction using artificial intelligence
methods. This study analyses the clinical performance of distinct artificial intelligence based SI
prediction methods (2 different neural network based prediction methods: Classification Deep
Network and Mixture Density Network with 3 different parametrizations and 2 variants: sex-
specific and non sex-specific for each). In-silico validation was used for evaluation simulating the
treatment of 171 virtual patients. Based on the results the number of input parameters involved
into the prediction can effectively increase the reliability of the SI prediction. Improvements in
the performance are also experienced in several cases by using sex-specific models.
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1. INTRODUCTION

Applying tight glycaemic control (TGC) is an essential
treatment in the intensive care therapy in order to avoid
stress-induced hyperglycaemia (McCowen et al. (2001); Ali
et al. (2008)) resulting in definite clinical benefits (Van den
Berghe et al. (2001); Krinsley (2018)).

The STAR (Stochastic-TARgeted) protocol is a model-
based TGC protocol successfully implementing safe and
efficient patient treatment (Benyé et al. (2012); Stewart
et al. (2016); Dubois et al. (2017); Le Compte et al.
(2012); Schultz et al. (2012)). STAR wuses the clini-
cally validated physiological model, called Intensive Con-
trol Insulin-Nutrition-Glucose (ICING) to describe the
glucose-insulin dynamics, and — in its original version, that
is used in this study — a 2D stochastic model to manage
patient-specific metabolic variability (Evans et al. (2012))
displayed in Figure 1.

Most of the parameters in the ICING model are set to a
population based constant except insulin sensitivity. The
patient-specific insulin sensitivity (SI) is the only dynamic
parameter calculated hourly based and aimed to capture
the current state of the patient (Chase et al. (2011);
Suhaimi et al. (2010)). ST is identified from the clinical
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Fig. 1. Schematic representation of the physiological pro-
cesses described by the ICING model.

treatment data (insulin dosing, nutrition intake and BG
measurements) during the treatment of the patients.

The optimal treatment selection method consists of three
main steps shown in Figure 2:

(1) Identification of current SI;
(2) Future SI range prediction with a 90% likelihood;
(3) Best treatment option selection.

For the prediction of future SI range STAR applies a condi-
tional density function defining the conditional probability
distribution of SI(¢t+1) for a given SI(t) shown in Figure



o o130
| 5n, 25m, 50" (median), 75", 95"
| percentile bounds for St)

Apredicted patient response!

Iterative process targets this
s BG forecast to the range we
) want:

Blood glucose

Patient response forecast Blood glucose

can be recalculated for

) different treatments. 65
: a0

= optimal treatment found!

Time

Fig. 2. Ilustration of optimal treatment selection method
of STAR tight glycaemic control protocol.

3 (Le Compte et al. (2010); Lin et al. (2008a)). Similar
density functions are used to define the 90% confidence
interval of SI in the future, in one, two, or three hours.
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Fig. 3. Conditional density function defining the condi-
tional probability distribution of SI(t+ 1) for a given
SI(t).

In our previous work we implemented and compared two
new, artificial intelligence (AI) based prediction methods
for the STAR protocol: a Classification Deep Network
(CDN) based method and a Mixture Density Network
(MDN) based method (Beny6 et al. (2020)). In the pre-
vious work we have evaluated the methods based on met-
rics describing the prediction power and accuracy (Szabd
(2020)). In this work we investigated the clinical perfor-
mance of the STAR protocol applying the new, Al based
prediction methods using in-silico simulations.

In a recent study (Uyttendaele et al. (2021)) Uyttendaele
et al. investigated whether there is any difference between
men and woman in insulin resistance. Thus, in this work we
trained dedicated models using sex based separation and
made performance evaluations with the STAR protocol.
This experimental setup allowed us not only to validate
the AI based approach but also compare the performance
of the sex specific models.

Input parameters All Female Male
SI(t) CDN/MDN | CDN/MDN | CDN/MDN
SI(t—1),SI(t) CDN/MDN | CDN/MDN | CDN/MDN
SI(t—1),SI(t), CDN CDN CDN
BG(t),I(t), N(t) MDN MDN MDN

Table 1. Overview of neural network models
used for prediction of SI(t+ 1) in this study.

2. METHODS AND DATA

The above mentioned two artificial neural network based
methods (MDN, CDN) were used with three different
parametrizations. For each of them, there are both sex-
specific and non-specific variants. These parametrizations
differ in the number of input parameters so they are
referred by a dimension number in the name of the model
variant (e.g. 1D sex-specific CDN) referring to the number
of input parameter it uses. The actual attributes that were
used as input parameters in the prediction can be seen
in Section 2.3. Table 1 shows a summary of the applied
models.

2.1 CDN network

The Classification Deep Network method — suggested by
us in Benyd et al. (2020) — uses multi class classification to
predict the confidence interval of SI(t+1). The ST(t+1)
domain was separated to disjunct intervals and the data
points was labeled with the number of the subinterval
which contains the SI(¢ + 1) value of the data point.

The values of the softmax output layer of the network
assign a probability for each subinterval that means the
probability of containing the SI(¢ + 1) value. This his-
togram can be interpreted as a discrete distribution of
the SI(t + 1) value. Thus the confidence interval can be
calculated by combining the probable subintervals. For this
combination a normal fitting can be used by calculating
the mean and standard deviation of the histogram.

More details of the applied CDN network can be found in
Beny6 et al. (2020).

2.2 MDN network

The Mixture Density Network (Bishop (1994)) is a method
to approximate a conditional distribution. The network
approximates the distribution with a Gaussian mixture
distribution. Therefore its output consists of the parame-
ters of each sub-distribution such as means, deviation and
weights. The number of the distributions that builds up
the mixture can be specified as hyper parameter of the
method.

This method also requires a post processing step to cal-
culate the confidence interval. Endpoints of the interval
are calculated by numerical inversion on the cumulative
density function of the network output.

More details of the applied MDN network can be found in
Beny6 et al. (2020).

2.8 Data used

The analysis involved 354 patients from 3 different clinical
settings. In the perspective of the neural network training



this means 62433 data point. These data points consist
of 15657 data points coming from male patients and 8264
data point coming from female patients. For the remaining
38512 data point there was no sex information.

For each data point the following attributes has been
calculated:

e current BG value linearly interpolated from measured
BG,

e current insulin sensitivity value of the patient (ST is
identified for every hour),

e previous insulin sensitivity value of the patient (one
hour before),

e carbohydrate intake (N) during previous hour (in
milligram),

e amount of administrated insulin (I) during previous
hour (in milliunit).

Based on the data point attributes above 3 model
parametrizations have been defined for both the CDN and
MDN prediction method. The 1D models use only the
current SI as input parameter, the 2D models use the one
hour early SI in addition to that and the 5D models use
all the earlier mentioned data point attributes as input
in the prediction. Even though in the 5D case some of
the parameters may correlate with each other, we assume
potential benefits of using additional parameters as the
human metabolic system shows stochastic behaviour com-
ponents (Benyé et al. (2016); Lin et al. (2008b); Palancz
et al. (72016”); Beny6 (2019)).

Instead of connecting the sex information as input parame-
ter to the prediction, separate models were created to use
in the sex sensitive protocol. These models were trained
on the sex selected data points mentioned above. The sex
sensitive protocol uses the adequate model based on the
patient’s sex info.

More details about the effects of involving additional
input parameters into the prediction can be found in
Uyttendaele et al. (2019); Davidson et al. (2020); Szabd
et al. (2021).

2.4 In-Silico validation

In this work we applied in-silico virtual trials (Chase et al.
(2010)), to test the clinical performance of the protocol
using different methods on different cohorts.

When using virtual trials the clinical environment from
historical patient data are simulated by creating virtual
patients and then treat them based on the decisions
of the protocol. The base idea behind the trial is that
the insulin sensitivity of the patient is independent from
the nutrition and insulin dosage, it depends only on the
state of the patient. Therefore, historical SI values of the
patients remain relevant even with modified insulin and
nutrition dosage. During the in-silico validation patients
are processed one by one. The first BG measurement is
taken from historical data then new BG measurements
are calculated by the ICING model using the historical SI
values.

At the end of simulations clinically important results
are extracted, such as hours spent in different clinically
relevant BG regions (as it is listed in Table 2 and Table
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Fig. 4. CDF curve based comparison of CDN networks by
dimension and sex specificity

3) and count of hypo events. For this calculation the
BG measurements were resampled hourly using linear
interpolation to make them evenly distributed in time.

To compare the models based on the statistics it has to be
considered that both hypoglycaemic and hyperglycaemic
events have to be avoided. Thus, the lower number of
episodes and relative times in these regions belong to
higher safety. Between these two event types the hypo-
glycaemic is more dangerous as it can cause severe patho-
physiological symptoms in relatively short time.

From the evaluation two types of statistics have been
created. The cumulative distribution function (CDF) of
the BG values and the cohort statistics.

3. RESULTS

The CDF curve based comparison of the model variants
can be seen in Figure 4. The curves are similar in shape
but tends to be translated on the x axis compared to
the original STAR protocol results meaning that the BG
values resulted by the Al prediction are shifted to higher
BG regions.

The hypoglycaemic events that should be avoided from
safety aspects are the BG measurements below 4.4mmol /L.
The corresponding part of the CDF curves can be seen
in Figure 5 and 7. Decreased number of hypoglycaemic
events are resulted by all the AI prediction methods in
different measures. In general the largest improvement is
resulted by the 1D version predictions. These hypogly-
caemic events and the most serious hypoglycaemic events
— the BG measurement below 2.5mmol/L — can be also
seen in Table 2 and 3. In these tables we can see that the
differences between the methods are relatively small: The
number of episodes below 2.2mmol /L are between 4 and 9
representing 0.02 and 0.04 percent of the treatment hours
and the number of episodes below 4.0mmol/L are between
83 and 125 representing 0.76 and 1.33 percent of the total
treatment hours.

In Table 2 and Table 3 there is also information about
the relative time spent in the hyperglycaemic (above 10
mmol/L) range. The application of the Al based prediction
moderately increases the BG measurements in higher
regions compared to the original STAR protocol: The
number of hours spent in the 6.0 — 9.0mmol/L increased
up to 15%. However, the number of serious hyperglycaemic
events (above 10mmol/L) has not increased significantly.



STAR 1D 1D 2D 2D 5D 5D

Current all sex-spec. all sex-spec. all sex-spec.
Num BG measurements 13186 13210 13367 13241 13551 13365 13801
Num episodes < 4.0 mmol/L 105 83 92 88 105 101 99
Num episodes < 2.22 mmol/L 9 4 8 5 4 4 4
BG median (mmol/L) 6.0 6.3 6.2 6.2 6.0 6.1 6.1
[IQR] [5.39-6.62] [5.69-7.00] [5.61-6.88] [5.58-6.84] [5.46-6.73] [5.50-6.74]  [5.54-6.78]
BG mean (mmol/L) 6.1 6.4 6.3 6.2 6.1 6.1 6.2
BG StDev (mmol/L) 1.21 1.21 1.21 1.21 1.22 1.21 1.21
% BG < 2.22 (mmol/L) 0.04 0.02 0.03 0.02 0.02 0.02 0.02
% BG < 4.0 (mmol/L) 1.30 0.76 0.98 0.95 1.22 1.07 1.01
% BG < 4.4 (mmol/L) 3.03 1.87 2.25 2.23 2.79 2.47 2.25
% BG within 4.4 - 6.1 (mmol/L) 68.65 55.62 59.54 61.97 65.40 65.56 64.76
% BG within 4.4 - 7.0 (mmol/L) 80.31 72.97 76.10 76.94 78.31 78.82 77.79
% BG within 4.4 - 8.0 (mmol/L) 89.96 89.45 89.74 90.01 89.53 90.07 89.53
% BG within 4.4 - 9.0 (mmol/L) 93.35 94.11 93.91 94.03 93.27 93.77 93.51
% BG within 6.0 - 9.0 (mmol/L) 44.49 59.74 56.32 53.74 47.81 48.56 50.23
% BG within 8.0 - 10 (mmol/L) 5.05 6.65 6.00 5.77 5.54 5.41 6.01
% BG > 10 (mmol/L) 1.97 2.04 2.03 1.99 2.15 2.06 2.23

Table 2. Statistics for Classification Deep Network (CDN) has been generated showing relative
time spent in the different BG ranges. BG levels have been resampled except in the first three
rows. 71D”  72D” | ”5D” refers to the number of prediction inputs, while in case of ”sex-spec.”,
and ”all” the sex specific models were applied or not applied during in-silico simulation. The

column "STAR” contains the results of the original protocol.

STAR 1D 1D 2D 2D 5D 5D

Current all sex-spec. all sex-spec. all sex-spec.
Num BG measurements 13186 13228 13283 13157 13301 13421 13693
Num episodes < 4.0 mmol/L 105 101 106 116 125 119 110
Num episodes < 2.22 mmol/L 9 5 7 8 7 5 5
BG median (mmol/L) 6.0 6.1 6.2 6.1 6.0 5.9 6.0
[IQR] [6.39-6.62] [5.51-6.74] [5.57-6.80] [5.47-6.69]  [5.40-6.64] [5.39-6.56]  [5.40-6.60]
BG mean (mmol/L) 6.0 6.2 6.2 6.1 6.0 6.0 6.0
BG StDev (mmol/L) 1.21 1.21 1.21 1.22 1.22 1.21 1.21
% BG < 2.22 mmol/L 0.04 0.02 0.03 0.04 0.04 0.02 0.02
% BG < 4.0 mmol/L 1.30 1.12 1.10 1.29 1.40 1.33 1.26
% BG < 4.4 mmol/L 3.03 2.57 2.61 3.08 3.35 3.20 3.09
% BG within 4.4 - 6.1 mmol/L 68.65 64.60 60.98 65.97 67.63 69.83 68.94
% BG within 4.4 - 7.0 mmol/L 80.31 78.66 77.67 79.19 79.83 81.37 81.18
% BG within 4.4 - 8.0 mmol/L 89.96 90.13 89.86 89.77 89.82 90.19 90.23
% BG within 4.4 - 9.0 mmol/L 93.35 93.79 93.73 93.33 93.10 93.32 93.36
% BG within 6.0 - 9.0 mmol/L 44.49 50.88 55.19 49.13 45.95 42.83 44.60
% BG within 8.0 - 10 mmol/L 5.05 5.31 5.54 5.22 4.91 4.69 4.75
% BG > 10 mmol/L 1.97 1.99 2.00 1.94 1.94 1.93 1.93

Table 3. Statistics for Mixture Density Network (MDN) has been generated showing relative
time spent in the different BG ranges. BG levels have been resampled except in the first three
rows. 71D”  72D”  ”75D” refers to the number of prediction inputs, while in case of ”sex-spec.”,
and ”all” the sex specific models were applied or not applied during in-silico simulation. The

column "STAR” contains the results of the original protocol.
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4. DISCUSSION

The CDF comparison shows that there are differences in
the treatment results depending on the number of inputs
and the sex-specificity of the model used for SI prediction.
The easily recognisable shift between the CDF curves in
the central (4.0 — 8.0 mmol/L) BG region — see Figure 4
— is basically caused by the different proportions of the
hypoglycaemic events in BG region below 4.0 mmol /L that
can be seen in Figure 5.

From the safety aspect all of the new CDN models and
most of the MDN models perform better than the cur-
rently used method, the 1D non-sex-specific models pro-
duce the best result based on the Figures 4 and 6. Mea-
sured by the number of episodes (second row of Table 2 and
Table 3) and by the proportion of the time spent in hypo-
glycaemic BG range (row labelled by ”% BG 4.4 mmol /L”
of Table 2 and Table 3) the performance is two times better
in the case of the best prediction method. The absolute
numbers are relatively low but the about half percent
improvement corresponds to about 120 treatment hours
in the case of 350 patient. It is important to mention that
the safety improvement is not due to the more frequent
BG measurements. The number of measurements has not
increased significantly by using AI based prediction as it
can be seen in the first row of the tables.

Comparing the MDN methods with each other the involve-
ment of additional parameters did not improve the safety
of the protocol. The largest difference between the models
can be experienced in the time spent in the BG region
within 6.0 to 9.0mmol /L.

This analysis showed that there are differences in SI
and BG behaviour of the patients based on their sex
which confirms the results of previous similar studies
(Uyttendaele et al. (2021)). Extracting this information
to improve the performance of the SI prediction is not
straightforward. In this analysis dedicated models are
defined to learn the sex-specific conditional distribution
using dataset filtered by sex. This way, unfortunately, the
sex-specific models are trained with less data sample than
the non-specific variants. Moreover, there were significant
amount of patient data lacking sex information that can
be used in the training of the non-specific models but not
in the sex-specific ones. If we consider that the neural
networks will perform better by the bigger volume of
training data even if the quality of the data is not so good,

than this difference in the volume can lead to significant
performance loss.

It was an interesting result that the 1D prediction of both
CDN and MDN networks the sex-specific models are less
performant than the non sex-specific variants. There are
also cases when the sex-specific and non sex-specific model
perform very similarly. These results could be also caused
by the smaller dataset used by the training of sex-specific
models.

Therefore, the subsequent step of this research will be to
create neural models using the sex information as an input
parameter instead of using dedicated models separately.
The sex information can be encoded on a range of —1 to 1
where the two sexes are the border values. A patient with
unspecified sex can be coded with zero as sex parameter.
By this solution the network can be trained on the whole
dataset.

5. CONCLUSION

In this paper two neural network based SI prediction
methods with three different parametrizations were evalu-
ated and compared with their sex-specific and non-sex-
specific counterparts, and also compared with the cur-
rently used SI prediction method of the STAR protocol.
The evaluation was done using in-silico validation simu-
lating the treatment of 171 virtual patients. Results show
that building dedicated sex-specific models can improve
the SI prediction performance but in some cases a non
sex-sensitive model can lead to similar results, as well.
However, all of the presented Al based prediction models
were more efficient from one or more clinical aspects than
the currently used 1D prediction. Thus, the flexibility of
the AI based methods to easily develop multi dimensional
predictions is highly appreciated in the SI prediction and
may result in clinical benefits.

Based on the presented results the specific effect of the
additional patient parameters on the SI prediction perfor-
mance can not be clearly identified. The most probable
reason for this is the limited dataset. The unbalanced
training dataset may also affects the outcome. The sex-
specific models were trained on filtered datasets based on
sex information causing significantly reduced sized train-
ing data which negatively affects the prediction perfor-
mance. To overcome on these difficulties we encourage the
creation of models handling the sex information of the
patients as an input parameter. A model like that can be
trained on the whole cohort dataset and may reach better
predictive performance.
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