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Abstract: In mechanically ventilated patients, some lung injuries can be reduced or avoided
with therapy individualization, while the lung function is evaluated continuously, breath by
breath. However, obtaining information on respiratory mechanics (respiratory system resistance
and compliance) in the presence of respiratory effort is challenging, even if using invasive
and complex procedures. The contribution of this work is to predict both respiratory system
resistance and compliance over time using a convolutional neural network (CNN) and estimate
the respiratory effort profile using the respiratory dynamics. Therefore, the approach used in
this work was to generate a large amount of simulated data to feed a CNN so it could learn
how to predict the correct values of the respiratory system resistance and compliance. Then, the
respiratory effort was estimated by solving a first-order linear model. The main results showed
a normalized mean squared error of 5.7% for the respiratory system resistance and 11.56% for
compliance from Bland-Altman plots derived from the computational simulator. Finally, the
method was validated using real data from an active lung simulator within which respiratory
mechanics varied, and some ventilator settings were adjusted to mimic actual patient situations.
The active lung simulator effort profile was obtained with a normalized mean squared error of
8.31% considering the use of an active lung simulator. The results have shown that the simulated
data were valuable for the CNN training, while the performance over the real data suggested
that the network was generalized accordingly for estimating respiratory parameters and effort
profile.
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1. INTRODUCTION

Lung injuries in mechanically ventilated patients can be
avoided or minimized by continuously assessing the me-
chanics of the lungs at each respiratory cycle. Information
on the patient’s ventilatory dynamics, such as resistance
and compliance, is important in adapting therapy, aiming
to meet the patient’s need and minimize the deleterious
effects imposed by artificial mechanical ventilation. How-
ever, in the presence of breathing effort, the available
options to continuously quantify breathing effort and res-
piratory mechanics are often invasive or complex (Heyer
et al. 2002; Khirani et al. 2010).Although the measurement
of breathing effort should be beneficial in some situations,
it is not commonly evaluated in clinical practice (Vicario
et al. 2015; Khirani et al. 2010).

The gold-standard method to evaluate respiratory ef-
fort requires an invasive esophageal balloon, using the
esophageal pressure as a surrogate measure for pleural

pressure (Bellani and Pesenti 2014;Vicario et al. 2015).
Expiratory occlusions have also been used to measure the
resistance and compliance of the respiratory system, two
important quantities in the medical field to define the
dynamics of the respiratory system, but this requires a
rapid occlusion during ventilatory support (Lopez-Navas
et al. 2014).

As a result, non-invasive approaches have been proposed
to assess respiratory mechanics and breathing effort during
invasive mechanical ventilation. The least-squares method,
usually used to estimate the respiratory system parame-
ters during passive ventilation, produces accurate results
only if the patient is entirely passive or if the pressure
from the esophageal balloon is also used (Khirani et al.
2010; Vicario et al. 2015). Vicario et al. 2015 proposed
an interesting approach using quadratic programming and
domain constraints, based on the physiology of respiratory
effort, to assess ventilator pressure and flow data during
assisted breathing. The presented constrained optimiza-



tion algorithm provides reasonable estimates of respiratory
effort and respiratory mechanics under certain conditions.
However, this approach has limitations, such as its high
computational cost and lack of robustness to approach this
problem, since non-observability makes the problem possi-
ble but undetermined and, therefore, creates the need for
external biological information to solve it. Thus, regressive
methods that generalize the data patterns in order to ob-
tain plausible results, considering the biological limitations
of the human body, should be more successful.

The contribution of this work is to predict both respiratory
system resistance and compliance over time using a convo-
lutional neural network (CNN) and, finally, estimate the
respiratory effort profile using the well-known first-order
linear model of the respiratory system (Carvalho and Zin
2011) since, with these estimated parameters, the problem
becomes the solution of a possible and determined system.
Thus, in this work, we used a computational simulator to
generate data for open airway pressure, airflow, and air
volume to evaluate respiratory effort using three waveform
profiles, and all variables of peak pressure, resistance,
compliance, peak time, and finish time could be defined to
simulate possible patient situations (Fresnel et al. 2014).
Unlike the method proposed by Vicario et al. (2016) and
other model-based algorithms which create their restric-
tions heuristically, our technique learns physiologically
plausible results through data.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some theoretical background techniques,
which are deep learning techniques used in this work. Sec-
tion 3 discusses the material and the methods used in this
work, which is divided into respiratory system modeling,
respiratory mechanics simulator, 1D-CNN setup, training
and validation dataset, and active lung simulator dataset.
Section 4 shows the results obtained using a 1D-CNN
considering the setup presented in section 3. Section 5
discusses the results, presenting clinical implications and
some limitations. Finally, section 6 concludes the work and
shares ideas for future research.

2. THEORETICAL BACKGROUND

In this work, we used deep learning techniques, in spe-
cific, convolutional neural networks (CNNs). This tech-
nique was inspired by the functioning of the cat’s visual
cortex (Hubel and Wiesel 1962) and proposed initially
to work with matrices. Recently, 1D-CNNs have been
proposed and immediately achieved state-of-the-art per-
formance levels in several applications such as person-
alized biomedical data classification and early diagnosis,
structural health monitoring, anomaly detection, and iden-
tification in power electronics and electrical motor fault
detection (Kiranyaz et al. 2021).

1D-CNN architectures were chosen due to their high
capacity to detect characteristics present in the data.
They can work with dimensionality in sampling, real-
time applications, and low-cost hardware implementation.
The compact and straightforward configuration of 1D-
CNNs performs only 1D convolutions, which are scalar
multiplications and additions, as seen in (1) (Goodfellow
et al. 2016; Kiranyaz et al. 2021).

In the following subsections, we describe essential theoret-
ical parts from CNN architecture.

2.1 CNN architecture

1) Convolutional layer: A vector of parameters, repre-
sented by W, is defined as a convolutional filter to be
learned. It is important to note that the operation used in
a convolutional neural network does not correspond pre-
cisely to the definition of convolution used in other fields,
such as engineering or pure mathematics (Goodfellow et al.
2016). In the case of (1), we can consider it as an inner
product, but in general, for more dimensions, it is called
cross-correlation.

f—1
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where V and W are vectors of floating numbers with
size equals to a hyperparameter called filter, an integer
number, the variable i iterates between 0 until f-1, where
f describes the dimensions of the parameter filter that will
be used.

2) Max Pooling layer:  The pooling layer’s main function
is to reduce the number of values, thus greatly improv-
ing computational time as well as controlling overfitting
(Scherer et al. 2010; Girshick 2015).

3) Batch Normalization layer:  Batch Normalization al-
lows being less careful about initialization and learning
rates (Ioffe and Szegedy 2015). Therefore, it fundamen-
tally impacts network training: it makes the landscape of
the corresponding optimization problem significantly more
smooth. This ensures, in particular, that the gradients are
more predictive allowing faster network convergence using
an extensive range of learning rates (Santurkar et al. 2018).

2.2 CNN Hyperparameters

Convolution operations can be performed in several ways
depending on the stride, kernel size, volume, padding, and
the number of filters. The stride, represented by s, is the
step that is carried out from one convolution operation to
another. The kernel size describes the dimensions of the
parameter filter f that will be used. The output volume is
related to the dimension of the input, L;, for input length.
The padding, represented by p, represents an addition of
null values to the information to increase the size of the
output or keep it constant (Goodfellow et al. 2016).

The selection of each of these hyperparameters not only de-
fines how the convolutional operational will be performed
but also the size of the output of each network layer.
Equation (2) models the size of the output based on a
1D-CNN:

Output = {
s



3. MATERIALS AND METHODS
3.1 Respiratory system modeling

The mechanical ventilator and patient set was modeled as
a first-order system, in which the difference between the
airway pressure (P, (t)) and the respiratory effort pres-
sure (Ppus(t)) was described as the sum of the resistive
(Pres(t)) and elastic (Pg;(t)) pressures of the respiratory
system (Carvalho and Zin (2011)). Equation (3) describe
the modeled system, where R is the resistance, C' is the
compliance, V(%) is the air volume, and V (%) is the airflow:

Pres(t) = RV (t);
V(1)

Pu(t) = — 3)
Paw(t) - Pmus(t) = Pres(t) + Pel(t)~
The quantities Py (t), V(t), and V (t) are readily avail-
able in mechanical ventilator, while respiratory mechan-
ical parameters of resistance and compliance need to be
estimated.

3.2 Respiratory mechanics simulator

A simulator proved to be extremely important in this
research since the airflow, volume, and pressure waveforms
are difficult to be obtained. Given this, some considera-
tions were made regarding variables and types of curves
capable of generating more realistic measurements. For
example, we added noise in the simulated waveforms, delay
in the ventilator trigger, different types of curves referring
to the patient effort, and variations in respiratory rates to
diversify the period of each respiratory cycle. The code is
avaiable in gitlab!.

All parameters were randomly sampled, considering a
uniform distribution, respecting physiologically acceptable
values. The generated airflow, volume, and pressure wave-
forms were discretized, sampling frequency was 50 Hz
and we used a fixed time window of 901 samples, which
represents approximately 18 seconds of breathing. table
1 describes the minimum and maximum values for each
parameter as well as their dimensions in respiratory dy-
namics. In addition to table 1, we input three different
profiles of muscular pressure (P, s) waveforms: sinusoidal,
linear, and parabolic-exponential; and two pressure rise
types for the ventilator control: linear and exponential.

Table 1. Simulator’s parameters

Paramater Minimun  Maximum Dimension

Compliance 30 80 mL/cmH20

Resistance 4 30 cmH20.s/mL
Respiratory Rate 10 35 rpm
Peak Amplitude -15 -5 cmHsO

Peak Time 0.3 0.8 s

End Time 1 1.5 s

Compliance and Resistance are important values for the
simulator since they are the dynamical constants which the
first-order linear model requires. Respiratory Rate is the
frequency measure between two respiratory cycles. Peak

L https://gitlab.com/ita-health-open/mastering-pmus

amplitude, Peak Time, and End Time are properties from
Pmus defining the maximum amplitude (Peak amplitude),
the difference of time between the start and the end of
the inspiratory phase (reaching the peak amplitude), and
finally, the end time which represent the period between
the start and the end of the expiratory phase.

Importantly, ineffective effort and double triggering asyn-
chronies were also implemented, which are frequent prob-
lems in patients under support ventilation and should
be modeled to make the simulator closer to reality. The
ineffective effort can be described as the failure of the
ventilator to detect that the patient needs support pressure
and, therefore, the mechanical ventilator does not provide
airflow. On the other hand, the double triggering happens
when the patient does not need the support pressure at
a given time, but the ventilator triggers, which may be
related to ventilator-induced lung injuries (Brochard 2016;
Holanda et al. 2018).

Table 2. 1D CNN architecture, in the left
column we describe the layer’s type, and on the
right side the input’s dimension of each layer.

Layer Dimension
Input 901x3x1
Conv1D 901x5x1
Batch Normalization 901x5x1
Activation Leaky Rectified Linear Unit
Max Pooling 405x5x1
ConvlD 405x5x1
Batch Normalization 405x5x1
Activation Leaky Rectified Linear Unit
Max Pooling 225x5x1
ConvlD 225x5x1
Batch Normalization 225x5x1
Activation Leaky Rectified Linear Unit
Max Pooling 112x5x1
ConvlD 112x5x1
Batch Normalization 112x5x1
Activation Leaky Rectified Linear Unit
Max Pooling 56x5x1
Conv1D 56x5x1
Batch Normalization 56x5x1
Activation Leaky Rectified Linear Unit
Max Pooling 28x5x1
Convl1D 28x5x1
Batch Normalization 28x5x1
Activation Leaky Rectified Linear Unit
Max Pooling 14x5x1
ConvlD 14x5x1
Batch Normalization 14x5x1
Activation Leaky Rectified Linear Unit
Max Pooling Tx5x1
ConvlD Tx5x1
Batch Normalization Tx5x1
Activation Leaky Rectified Linear Unit
Max Pooling 3x5x1
ConvlD 3x5x1
Batch Normalization 3x5x1
Activation Leaky Rectified Linear Unit
Flatten 15x1
Dense 200x1
Dense 50x5x1
Output 2x1




3.3 1D-CNN setup

After sampling the data with the generator described in
the previous topic, a 1D-CNN is used to find patterns from
airflow, the air volume, and airway pressure and correctly
predict values of resistance and compliance, represented
by R and C, respectively. table 2 describes the 1D CNN
architecture, and Table 3 describes the hyperparameters
used. We developed 1D-CNN algorithms using Python
programming language, Tensorflow, and Keras library
(Chollet et al. 2015).

Table 3. CNN hyperparameters

Hyperparameters Value
Kernel Size (ConvlD) 5
Pool size (Pooling) 2
Bias (Conv1D) False
Alpha (Leaky Relu) 0.1
Learning Rate (Adam) 0.001
Decay (Adam) 0.0001
Number of Minibatches 1

The idea is that the CNN is an inverse function of the
process performed in the simulator, receiving the variables
volume, airflow, and airway pressure, which are usually
available in a mechanical ventilator setting, as inputs and
the output will be the resistance and compliance variables,
which challenging to measure using non-invasive methods.
Equation (5) describes the function learned by the neural
network:

CNN(V,V,P,,) = (R,C), (4)

where V, V, and Pg, are volume, flow and airflow
pressure, respectively, all easily sampled from mechanical
ventilator.

3.4 Training dataset

A dataset composed of 60,000 samples was used for the
neural network training. Fach sample is a whole respi-
ratory cycle containing airflow, air volume, and pressure
waveforms, besides the used resistance and compliance
for system dynamics. The neural network was training
following (5), using 70% of the data for training, 15% for
validation, and 15% for testing. In addition, a condition
of training stop, called Early Stopping, was used to avoid
overfitting. The condition was to stop iterating if the mean
quadratic error of the validation set reached 10 consecutive
values greater than the minimum obtained during the
training.

3.5 Active lung simulator dataset

A dataset generated using an active lung simulator (ASL)
was used, each sample obtained from ASL has a whole
respiratory cycle containing airflow, air volume, and pres-
sure data (de Macedo et al. 2019). The 1D-CNN was used
following (5) as an evaluation of how well the network
generalizes to deployment. In addition, the active lung
simulator was configured with different setups, which were
registered in table 4. To deal with the differences related

to the sampling we adapted the ASL sampling (512 Hz)
to the computational simulator (50 Hz).

Table 4. Setup of active lung simulator which
are kept constant during the experiments

Parameter Value
Frequency 512 Hz
Compliance 40 mL/cmH20
Resistance 12 cmH20.s/mL
Cycling off 25%

Slope 80%

PSV 5, 10, or 15 cmH20

4. RESULTS

To evaluate the quality of results we used normalized mean
squared error, nmse:

12
nmse = lly = Il ?in, (5)
ly — 9l

where y is the ground truth value, ¢ is the predicted value,
and ¥ is the average y value. The main results using the
1D-CNN showed that using the computational simulator
described in subsection 3.2 obtained a normalized mean
squared error of 5.7% for the respiratory system resistance
and 11.56% for compliance. At the same time, the muscu-
lar pressure was obtained with a normalized mean squared
error of 3.23%.
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Fig. 1. Training and validation loss function over the
number of epochs.

After training the 1D CNN, we tested the results using
the Active Lung Simulator (ASL) dataset, using (3) with
the dynamic constants predicted by the neural network,
represented by Fig. 4 considering one patient which has
compliance equals to 40 mL/cmH20 and resistance equals
to 12 cmH20.s/mL. Table 5 describes the performance
achieved.

The results have shown that the simulated data were
valuable for the 1D-CNN training, while the performance
over the real data, i.e, data provided from the active
lung simulator, suggested that the network generalized
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Fig. 2. In the y-axis we have the percentage error of the 1D-
CNN for the ground truth resistance, whereas in the
x-axis we have the average resistance value between
the value predicted by the network and the ground
truth, considering 1,000 samples from the test set
generated by the computational simulator.
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Fig. 3. In the y-axis we have the percentage error of the
1D-CNN for the ground truth compliance, whereas
in the x-axis we have the average compliance value
between the value predicted by the network and the

ground truth, considering 1,000 samples from the test
set generated by the computational simulator.

accordingly for estimating respiratory mechanics and effort
profile, generating a normalized mean squared error of
8.31%, 0.8% for compliance, and 7.47% for resistance. The
compliance error was lower than the training dataset due
to the fact that it was a specific case where the configura-
tion of resistance and compliance were well generalized by
the CNN, which does not occurs with all possible configu-
rations of R and C. Fig. 2 and Fig. 3 illustrate the results
as Bland-Altman plots for the estimates of computational
simulator dataset. The most relevant clinical implications
for this results will be an advance as an essential tool
for personalized medicine, for improving the capability of
physicians to diagnose complex clinical conditions, and

study the evolution of the breathing system throughout
some treatment starts.
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Fig. 4. Respiratory dynamical system measured by ASL
and muscular pressure curve obtained after estimate
both compliance and resistance.

Table 5. Performance’s comparison between
computational simulator test set and ASL

dataset.
Paramater Computational Simulator ASL
Compliance 11.56% 0.8%
Resistance 5.7% 7.47%
Muscular Pressure 3.23% 8.31%

5. DISCUSSION

Non-invasive approaches have been proposed to assess
respiratory mechanics and breathing effort during invasive
mechanical ventilation. Unlike the method proposed by
Vicario et al. (2016) and other model-based algorithms
which create their restrictions heuristically, our technique
learns physiologically plausible results through the data.

The CNN model relates airflow pressure, flow, and volume
parameters to output values of resistance and compliance.
Therefore, using only instantaneous data of pressure, flow,
and air volume as input to our 1-dimension CNN. After
predicting both parameters, we used the well-known first-
order linear model of the respiratory system (Carvalho and
Zin 2011) to obtain the respiratory effort profile.

Despite the use of the computational simulator to generate
samples available for the model development due to the
lack of real data, the CNN was successful in mapping the
inputs to outputs with a normalized mean squared error
of 8.31% considering ASL dataset. Therefore, this error
achieved by the CNN model on independent test samples
demonstrates that the Deep Learning approach can be
effectively applied for predictive modeling in non-invasive
approaches that have been proposed to assess respiratory
mechanics and breathing effort during invasive mechani-
cal ventilation. Notably, the CNN not only mapped the
dynamic system but also was unaffected by a decrease
in performance due to asynchrony problems encountered,
whether it be double-triggering or innefective effort.



The low mean squared error of muscle pressure is at-
tributed to the approach of first predicting the dynamic
constants of the system, both resistance, and compliance
with low mean squared errors, and then solving the lin-
ear system. The great advantage of a CNN is that it
extracts the main characteristics of the volume, flow, and
air pressure curves in order to predict such constants, this
is important since CNN can deal with small variations,
such as noise or even asynchronies present in the problem
(Kiranyaz et al. 2021), and later uses the constants as
invariant over the sampled interval. In addition, mapping
constants with low errors promotes gains in clinical anal-
ysis, since doctors understand respiratory characteristics
through these constants.

On the other hand, some limitations can be highlighted us-
ing this methodology.Regarding mathematical modeling,
exposed in subsection 3.1, there is no single solution to
the problem due to the fact that it is an undetermined
system. Regarding the CNN approach, the need for data
that represents the whole set of possibilities is important,
but the difficulty for us obtaining real dataset makes the
simulator the only possible approach, but just using a
simulator affect directly the performance due to the fact
that problems of distribution shift can be problematic
(Fang et al. 2020). Another limitation is related to the
choice of hyperparameters. In this research, the network
structure was determined empirically. Given this, there is
no guarantee that the hyperparameters used are optimal.

6. CONCLUSIONS AND FUTURE WORKS

The method presented for noninvasive estimation of respi-
ratory effort, using pressure support ventilation, demon-
strates the ability that the approach of convolutional
neural networks has to accurately estimate the waveform
profile assumed by each patient simulated by ASL, consid-
ering the particularities of each disease and according to
the patient’s clinical condition.Thus, this robust approach
was necessary due to the need to generalize and interpret
the data when using mechanical ventilators. Finally, the
results demonstrate not only that the network presented
reasonable generalization capacity but also that the ap-
proach through deep neural networks was achieved a good
accuracy.
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