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Abstract: Patient-specific lung-mechanics during mechanical ventilation (MV) can be modelled via using 

fully ventilated/controlled waveforms. However, patient asynchrony due to spontaneous breathing (SB) 

effort commonly exists in patients on full MV support, leading to variability in breathing waveforms and 

reducing the accuracy of identified, model-based, and patient-specific lung mechanics. This study aims to 

extract ventilated breathing waveforms from affected asynchronous breathing cycles using an automated 

virtual patient model-based approach. In particular, change of lung elastance over a pressure-volume (PV) 

loop is identified using hysteresis loop analysis (HLA) to detect the occurrence of asynchrony, as well as 

its type and pattern. The identified HLA parameters are then combined with a nonlinear mechanics 

hysteresis loop model (HLM) to extract and replicate the ventilated waveforms from the coupled 

asynchronous breaths. The magnitude of asynchrony can then be quantified using an energy dissipation 

metric, Easyn, comparing the area difference of PV loops between model-reconstructed and original 

breathing cycles. A proof-of-concept study is conducted using clinical data from 2700 breathing cycles of 

two patients exhibiting asynchrony during MV. The reconstruction root mean square errors are within 5-

10% of the clinical data for 90% of the cycles , indicating good and robust reconstruction accuracy. 

Estimation of Easyn shows significant asynchrony magnitude for Patient 1 with Easyn greater than 10% for 

over 50% breaths, while asynchrony occurrence for Patient 2 is lower with 90% breaths at Easyn < 10%, 

which is a minimal asynchrony magnitude. These results match direct observation, thus validating the 

ability of the virtual patient model and methods presented to be used for a real-time monitoring of 

asynchrony with different types and magnitudes, which in turn would justify prospective clinical tests. 

Keywords: Asynchrony; Mechanical ventilation; Hysteretic lung mechanics; Hysteresis loop model; 

Virtual patient. 

 

1. INTRODUCTION 

Mechanical ventilation (MV) is a core therapy for respiratory 

failure patients in the intensive care unit (ICU) (Major et al., 

2018), and is particularly important for managing Covid-19 

patients. Model-based methods have proven their potential and 

accuracy (Chiew et al., 2011, Morton et al., 2019a, Morton et 

al., 2020a, Zhou et al., 2021) for guiding and optimizing MV 

care to avoid ventilator induced lung injury (VILI) and reduce 

length of stay, mortality, and cost  (Ricard et al., 2003). 

However, significant inter- and intra- patient variability in lung 

mechanics and condition can make model identification 

difficult reducing the accuracy of lung mechanics identified. 

This issue is compounded when patient exhibit spontaneous 

breathing (SB) efforts, or any mismatch with the ventilator 

delivery, more generally referred to asynchrony.   

Patient SB effort is common as completed paralysis and heavy 

sedation of MV support may lead to ventilator induced 

diaphragmatic dysfunction (Epstein, 2011). Thus, patient-

ventilator interaction is frequent in long-term MV treatment 

with respiratory work done by both the ventilator and patients. 

However, clinical data demonstrates patient SB effort can 

cause up to 43% asynchrony rate, associated with failure of 

MV weaning (Gholami et al., 2018). Therefore, it is important 

to extract the true ventilated lung mechanics response from the 

asynchrony waveforms to estimate the asynchrony effect so as 

to adjust the ventilator settings for asynchrony reduction.  

Asynchrony reconstruction based on a single compartment 

linear lung model has been well-studied (Chiew et al., 2018, 

Damanhuri et al., 2016, Kannangara et al., 2016, Major et al., 

2016, Redmond et al., 2019), mainly based on the single 

dimension information of airway pressure. However, these 



 

 

     

 

methods require a multistep analysis or iteration of the 

pressure waveform with accuracy and robustness depending 

on the convergence of the algorithm. Their main advantage 

was their model-based enabling of automated monitoring and 

analysis of both asynchrony and lung mechanics, where 

clinical methods typically rely on observation and manual 

assessment. 

In contrast, a recently developed virtual patient model based 

on hysteretic pressure-volume (PV) loop analysis and 

hysteresis loop model (HLM) offers more complete 

respiratory information from both pressure and volume/flow 

measurements, improving the utility and robustness for model 

identification, focusing on the identification and prediction of 

non-asynchrony breathing cycles in prior work (Zhou et al., 

2021). This paper extends the developed HLM model to 

identify additional nonlinearities due to asynchrony to extract 

the missing lung mechanics from the asynchronous PV loop. 

The major goal is to provide a breath-to-breath direct 

estimation of asynchrony incidence and magnitude using only 

ventilated breath waveform data and the virtual patient model 

framework for real-time bedside monitoring.  

2. METHODS 

2.1 Hysteretic modelling of ventilated PV loop 

The mathematic equations developed for the HLM lung 

mechanics model is described (Zhou et al., 2021): 

𝑉̈ + 𝑅𝑉̇ + 𝐾𝑒𝑉 + 𝐾ℎ1𝑉ℎ1 + 𝐾ℎ2𝑉ℎ2 = 𝑓𝑉(𝑡) + 𝑃𝐸𝐸𝑃   (1) 

where V is the volume of air delivered to the lungs widely used 

in respiratory mechanics models (Morton et al., 2020a), and Ke 

represents the alveolar recruitment elastance. Vh1 and Vh2 are 

hysteretic volume response during inspiration and expiration, 

respectively, representing the key characteristics of nonlinear 

stress-strain or force-deformation relation, thus critical for 

determining the two nonlinear hysteretic springs, Kh1 and Kh2, 

for alveolar hysteresis elastance during inspiration and 

expiration, respectively. R is the airway resistance, PEEP is the 

positive end-expiratory pressure, and 𝑓
𝑉
(𝑡) is the steady-state 

input force. 

Given the availability of pressure and volume (or flow) data, 

the clinical hysteretic PV loop can be constructed, as seen in 

the blue cycle in Fig. 1. To model the clinical PV loop using 

the proposed HLM in Equation (1), hysteresis loop analysis 

(HLA) is implemented as a first key step to identify the 

stiffness (k1-k4) and breakpoints (Vm1, Vm2, Vmax) of each 

nonlinear phase for a complete breath (Zhou et al., 2015, Zhou 

et al., 2017). This second step is shown as the purple dashed-

line in Fig. 1. Model parameters for the HLM model can then 

derived and calculated based on HLA results to simulate and 

replicate the clinical PV loop, shown as the red solid line in 

Fig. 1. A detailed derivation of the model parameters based on 

HLA segmentation in the HLM lung mechanics model can be 

found in (Zhou et al., 2021), which is based in part on the prior 

basis function methods and models of (Morton et al., 2019b, 

Morton et al., 2019a, Morton et al., 2020b). 

 
Fig. 1. Example of HLM modelling of a fully controlled 

clinical PV loop. 

2.2 HLA identification of asynchronous PV loop 

Patient SB effort changes airway pressure and flow curves at 

any phase in a breath, resulting different types of asynchrony. 

Reverse triggering is a common type of asynchrony due to a 

reflexive neural response triggered by the ventilator applied 

pressure and flow (Baedorf Kassis et al., 2021, Major et al., 

2016), yielding an “M” shaped pressure curve in Fig. 2(a), 

further causing the change of nonlinear hysteretic mechanics 

in the measured PV loop shown in Fig 2(c).  

 
Fig. 2. Reverse triggering asynchronous breath with M-shaped 

curve in the pressure waveforms, while flow waveforms stays 

largely the same. 



 

 

     

 

However, a major advantage of HLM over the prior single 

compartment linear lung model for modelling a breathing 

cycle is the ability to provide a more comprehensive estimate 

and better observations of nonlinear features over both 

inspiration and expiration. In this study, HLA identifies the 

presence, and thus incidence, of asynchrony. The identified 

model can then be used to assess the magnitude of asynchrony. 

In particular, HLA is applied to the constructed asynchronous 

PV loop to identify the stiffness ka1-ka6 and breakpoints Vm1-

Vm2, as shown in Fig. 3. The breakpoint Vmax for fixing the tidal 

volume can then be calculated based on the intersection point 

of ka2 segment and ka5 segment, while the stiffness parameters, 

k1, k2, k3 and k4, for HLM are readily obtained from the 

identified ka1, ka2, ka5 and ka6, respectively. Therefore, the 

reconstruction of the ventilated response can be obtained using 

the HLM model with the HLA identification results (k1-k4, Vm1, 

Vm2, Vmax) as presented in (Zhou et al., 2021). 

 
Fig. 3. HLA identification of HLM stiffness and breakpoints 

for reverse triggering asynchronous PV loop. 

It is worth noting the observability of Vm1-Vm2 points in the 

measured data are critical for the identifiability or 

reconstruction of the ventilated PV loop. They provide the 

minimum information needed to identify stiffnesses ka2 and ka5 

via HLA, as shown in the black dots line in Fig. 3. However, 

patient asynchrony over the entire breathing cycle or for a long 

duration within a breathing cycle is rare. They would also 

indicate the existence of very significant SB efforts, suggesting 

weaning from MV without the need for special monitoring or 

methods. Thus, the identifiability and reconstruction of 

ventilated PV loop with the proposed HLM and HLA are 

considered feasible for more common, relatively smaller 

asynchrony durations. 

2.3 Estimation of asynchrony effect 

Energy dissipation refers to the work done by the ventilator in 

the airway for a ventilated patient, and can be directly 

calculated from the enclosed area of a measured PV loop. It is 

a critical measure of energy required for ventilating a patient 

and thus represents the essential patient recruitablity (Barnes 

et al., 2019), where a high energy or work of breathing would 

indicate a stiff lung and a less recruitable patient. While patient 

asynchrony produces negative work against the work of 

breathing done by ventilator, reducing its total value, the 

difference of area between the asynchronous PV loop and the 

reconstructed ventilated PV loop indicates the magnitude of 

asynchrony in a value relative to the ventilated energy required 

to support breathing. Thus, a metric to quantify asynchrony 

can be defined: 

𝐸𝑎𝑠𝑦𝑛 =
𝐴𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒𝑑−𝐴𝑎𝑠𝑦𝑛

𝐴𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑒𝑑
× 100%             (2) 

where Easyn is the quantified measure of the asynchrony effect 

in a breathing cycle, Aventilated is the area of reconstructed 

ventilated PV loop without asynchrony, and Aasyn is the area of 

the asynchronous PV loop.  

3. CLINICAL DATA 

Clinical data from two MV patients from the pilot CURE trial 

conducted in the Christchurch Hospital ICU in 2016 are used 

to interpret and provide a proof-of-concept validation of the 

proposed reconstruction method based on the HLM virtual 

patient model. Airway pressure and flow data were collected 

with sampling size of 50Hz using a bedside monitoring device 

CURESoft (Szlavecz et al., 2014). The New Zealand Southern 

Regional Ethics Committee granted ethics approval for this 

pilot trial (Davidson et al., 2014). Pressure and flow data were 

recorded at a sampling rate of 50Hz from a Puritan Bennett 

840 ventilator (Covidien Boulder, CO, USA). Patient 

demographics for this proof of concept analysis of the methods 

presented are given in Table 1.  

Table 1.  Patient demographics. 

Patient Sex Age Clinical Diagnostic 

1 Female 53 Fecal Peritonitis - surgery 

2 Male 60 Pneumonia 

Asynchrony phenomenon with different types and magnitude 

was observed using manual inspection for each ventilated 

patient in Table 1. In addition, each patient was given muscle 

relaxants to suppress SB effort before a stepwise recruitment 

manoeuvre (RM). Therefore, fully ventilated/controlled 

breaching cycles with SB effort eliminated by sedation and 

paralysis should be observed near the RM, enabling a 

comparison to the reconstructed waveforms for validation of 

the reconstruction and models.  

Specifically, reconstruction using these models is applied to 

350 breathing cycles. Reconstruction accuracy is validated by 

comparing the pressure waveform to the observed breathing 

cycles using root mean squared error, defined: 

𝑅𝑀𝑆 =
√
1

𝑛
∑ (𝑃𝑖−𝑃̂𝑖)

2𝑛
𝑖=1

1

𝑛
∑ 𝑃𝑖
𝑛
𝑖=1

× 100%             (3) 

where 𝑃𝑖  is the clinical pressure data, 𝑃̂𝑖  is the reconstructed 

pressure data, and n is the number of points for a breathing 

cycle. A low RMS error indicates an accurate reconstruction, 

ensuring an accurate estimation of the asynchrony using the 

metric Easyn in Equation (2). 

 



 

 

     

 

4.  RESULTS AND DISCUSSION 

4.1 Reconstruction and Estimation of Asynchrony 

Fig. 4 shows an example breath from Patient 1 with a clear M-

shaped SB effort leading to patient asynchrony observed in 

both the PV loop and pressure waveform. HLA is applied to 

the asynchronous PV loop to identify the values k1, k2, k3, k4, 

Vm1 and Vm2 needed to calculate the HLM virtual patient model 

parameters. Reconstruction is performed using forward 

simulation of the identified HLM model, where differences are 

used to estimate asynchrony magnitude. The reconstructed 

breathing cycle is then compared to the non-asynchronous 

breaths near RM, as shown in Fig. 5. It can be seen the 

reconstructed loop and pressure waveform match very well 

with the non-asynchronous breath during paralysis with RMS 

error of 1.8%, thus indicating a successful reconstruction using 

the proposed method.  

 
Fig. 4. Reconstruction of asynchrony breath cycle using HLM. 

In addition, the calculated Easyn for quantifying the asynchrony 

effect is 14.7% based on energy dissipation, indicating a 

significant asynchrony magnitude, matching the observation 

in Fig. 4. It should be noted the HLM virtual patient model and 

methods are a fully automated process (Zhou et al., 2021). 

Thus, the estimation of Easyn can be readily conducted breath-

to-breath automatically for a real-time assessment of 

asynchrony effect, and there is no need beyond validation to 

compare to paralysed breaths, as in Fig. 5.  

4.2 Results summary for all breathing cycles 

Fig. 6 summarizes the reconstruction RMS errors for all the 

breath cycles for both patients. RMS errors for both patients 

are within 10% for 90% breaths, indicating good and robust 

reconstruction accuracy. Larger errors are mainly due to the 

significant lack of necessary information for Vm1 or Vm2 or 

both, as shown in an example in Fig. 7, missing Vm1 and thus 

failing to estimate k1 and k2 for the reconstruction.  

 
Fig. 5. Comparison of the reconstructed breath cycle to the 

observed non-asynchrony breath cycle. 

However, the occurrence of inaccurate reconstruction is lower 

than 10%, merely affecting the trend analysis of patient 

asynchrony. Clinically, the presence of asynchrony might vary 

for each single breath, while patient condition may not vary for 

a short-period such as 30 secs or 60 secs equivalent to 10-20 

breath cycles. Thus, a moving average of reconstruction could 

be implemented across every 10-20 breaths (~1 min on 

average at typical breathing rates for ventilated ICU patients 

of 15-20 breaths per minute), enabling a steady and accurate 

reconstruction of ventilated response or fundamental 

mechanics, as well as the estimation of asynchrony severity.  

In addition, the proposed method provides a breath-to-breath 

real-time reconstruction of asynchrony as HLA and HLM 

identification and simulation are direct calculation suffering 

no convergence issues or high complexity. Therefore, the 

steady and accurate reconstruction can be readily available in 

real-time via moving average of the current breath and 

previous setting breaths, which would be critical for practical 

clinical use.  

Finally, asynchrony magnitude is assessed using Easyn, as 

shown in Fig. 8. Patient 1 shows significant asynchrony with 

over 50% breaths having Easyn > 50%, which matches direct 

manual observations over these analysed breathing cycles. In 

contrast, the asynchrony magnitude and incidence for Patient 

2 is much lower with Easyn < 10% for over 90% of breaths likely 

because a SIMV ventilation mode was applied to Patient 2 

producing a better adjustment of ventilator delivery. Therefore, 

accurate reconstruction of asynchrony offers automated, high 

quality assessment of asynchrony incidence and magnitude 

based on the energy dissipation metric Easyn presented.  



 

 

     

 

Clinically, controlling energy dissipation is considered an 

efficient tool to adjust MV settings to minimise ventilator 

induced lung injury (Barnes et al., 2019). Hence, the overall 

results show the potential of the virtual patient model from 

clinical condition monitoring perspective. As noted in prior 

work it is also effective at predicting response to changes in 

care to provide guidance for a wide range of MV scenarios. 

 
Fig. 6. Empirical cumulative distribution (CDF) of 

reconstruction RMS error for Patient 1 and Patient 2. 

 
Fig. 7. Example of inaccurate reconstruction due to missing 

Vm1 for Patient 1. 

In terms of limitations, this work only provides a proof-of-

concept validation using clinical data from two patients, 

although the two patients represent two very different typical 

asynchrony types and magnitudes. Thus, the performance of 

this method should be further validated with more clinical data, 

particularly for its robustness and generalisability to different 

patient conditions and lung mechanics. In addition, a further 

improvement might be achieved by predefining typical 

asynchrony patterns for different MV modes, thus enabling a 

more efficient and accurate reconstruction with additional 

constraints. However, the results in this work show validate its 

feasibility and potential for clinical use. 

 
Fig. 8. Empirical cumulative distribution (CDF) of asynchrony 

effect metric Easyn for Patient 1 and Patient 2. 

 

5. CONCLUSIONS 

This work extends a validated virtual patient model from fully 

ventilated respiratory response to asynchrony breathing cycles 

without undermining its automatous ability and calculation 

efficiency. Results show a high accuracy of reconstruction 

with the observability of the two breakpoints in the PV loop. 

More importantly, the modelling and reconstruction can be 

implemented in breath-to-breath in real-time, critical for 

practical clinical use. In addition, the asynchrony effect can be 

readily estimated via comparison of the energy dissipation of 

the reconstructed and measured breathing cycles. Finally, this 

work validates the versatility of the proposed virtual patient 

model for current typical MV cases, with a key feature to be 

implemented automatically in a breath-to-breath fashion for 

bedside monitoring and guidance of MV care.  

6. ACKNOWLEDGEMENTS 

The authors acknowledge support from the NZ Tertiary 

Education Commission (TEC) fund MedTech CoRE (Centre 

of Research Excellence; #3705718) and the NZ National 

Science Challenge 7, Science for Technology and Innovation 

(2019-S3-CRS). The authors also acknowledge support from 

the EU H2020 R&I programme (MSCA-RISE-2019 call) 

under grant agreement #872488 — DCPM. The support from 

the Taicang Yangtze River Delta Research Institute of 

Northwestern Polytechnical University is also acknowledged.  

REFERENCES 

Baedorf Kassis, E., Su, H. K., Graham, A. R., Novack, V., 

Loring, S. H. and Talmor, D. S. 2021. Reverse trigger 

phenotypes in acute respiratory distress syndrome. 

American Journal of Respiratory and Critical Care 

Medicine, 203, 67-77. 

Barnes, T. and Enk, D. 2019. Ventilation for low dissipated 

energy achieved using flow control during both inspiration 

and expiration. Trends in Anaesthesia and Critical Care, 

24, 5-12. 



 

 

     

 

Chiew, Y. S., Chase, J. G., Shaw, G. M., Sundaresan, A. and 

Desaive, T. 2011. Model-based PEEP optimisation in 

mechanical ventilation. Biomedical engineering online, 10, 

1-16. 

Chiew, Y. S., Tan, C. P., Chase, J. G., Chiew, Y. W., Desaive, 

T., Ralib, A. M. and Nor, M. B. M. 2018. Assessing 

mechanical ventilation asynchrony through iterative 

airway pressure reconstruction. Computer methods and 

programs in biomedicine, 157, 217-224. 

Damanhuri, N. S., Chiew, Y. S., Othman, N. A., Docherty, P. 

D., Pretty, C. G., Shaw, G. M., Desaive, T. and Chase, J. 

G. 2016. Assessing respiratory mechanics using pressure 

reconstruction method in mechanically ventilated 

spontaneous breathing patient. Computer methods and 

programs in biomedicine, 130, 175-185. 

Davidson, S. M., Redmond, D. P., Laing, H., White, R., Radzi, 

F., Chiew, Y. S., Poole, S. F., Damanhuri, N. S., Desaive, 

T. and Shaw, G. M. 2014. Clinical Utilisation of 

Respiratory Elastance (CURE): Pilot trials for the 

optimisation of mechanical ventilation settings for the 

critically Ill. IFAC Proceedings Volumes, 47, 8403-8408. 

Epstein, S. K. 2011. How often does patient-ventilator 

asynchrony occur and what are the consequences? 

Respiratory care, 56, 25-38. 

Gholami, B., Phan, T. S., Haddad, W. M., Cason, A., Mullis, 

J., Price, L. and Bailey, J. M. 2018. Replicating human 

expertise of mechanical ventilation waveform analysis in 

detecting patient-ventilator cycling asynchrony using 

machine learning. Computers in biology and medicine, 97, 

137-144. 

Kannangara, D. O., Newberry, F., Howe, S., Major, V., 

Redmond, D., Szlavecs, A., Chiew, Y. S., Pretty, C., 

Benyó, B. and Shaw, G. M. 2016. Estimating the true 

respiratory mechanics during asynchronous pressure 

controlled ventilation. Biomedical Signal Processing and 

Control, 30, 70-78. 

Major, V., Corbett, S., Redmond, D., Beatson, A., Glassenbury, 

D., Chiew, Y. S., Pretty, C., Desaive, T., Szlávecz, Á. and 

Benyó, B. 2016. Respiratory mechanics assessment for 

reverse-triggered breathing cycles using pressure 

reconstruction. Biomedical Signal Processing and Control, 

23, 1-9. 

Major, V. J., Chiew, Y. S., Shaw, G. M. and Chase, J. G. 2018. 

Biomedical engineer's guide to the clinical aspects of 

intensive care mechanical ventilation. Biomed Eng Online, 

17, 169. 

Morton, S. E., Knopp, J. L., Chase, J. G., Möller, K., Docherty, 

P., Shaw, G. M. and Tawhai, M. 2019a. Predictive virtual 

patient modelling of mechanical ventilation: impact of 

recruitment function. Annals of biomedical engineering, 

47, 1626-1641. 

Morton, S. E., Knopp, J. L., Chase, J. G., Docherty, P., Howe, 

S. L., Möller, K., Shaw, G. M. and Tawhai, M. 2019b. 

Optimising mechanical ventilation through model-based 

methods and automation. Annual Reviews in Control. 

Morton, S. E., Knopp, J. L., Tawhai, M. H., Docherty, P., 

Heines, S. J., Bergmans, D. C., Möller, K. and Chase, J. G. 

2020a. Prediction of lung mechanics throughout 

recruitment maneuvers in pressure-controlled ventilation. 

Computer Methods and Programs in Biomedicine, 197, 

105696. 

Morton, S. E., Knopp, J. L., Tawhai, M. H., Docherty, P., 

Heines, S. J., Bergmans, D. C., Möller, K. and Chase, J. G. 

2020b. Prediction of Lung Mechanics Throughout 

Recruitment Maneuvers in Pressure-Controlled 

Ventilation. Computer Methods and Programs in 

Biomedicine, 105696. 

Redmond, D. P., Chiew, Y. S., Major, V. and Chase, J. G. 2019. 

Evaluation of model-based methods in estimating 

respiratory mechanics in the presence of variable patient 

effort. Comput Methods Programs Biomed, 171, 67-79. 

Ricard, J. D., Dreyfuss, D. and Saumon, G. 2003. Ventilator-

induced lung injury. Eur Respir J, 22, 2s-9. 

Szlavecz, A., Chiew, Y. S., Redmond, D., Beatson, A., 

Glassenbury, D., Corbett, S., Major, V., Pretty, C., Shaw, 

G. M. and Benyo, B. 2014. The Clinical Utilisation of 

Respiratory Elastance Software (CURE Soft): a bedside 

software for real-time respiratory mechanics monitoring 

and mechanical ventilation management. Biomedical 

engineering online, 13, 1-14. 

Zhou, C., Chase, J. G., Rodgers, G. W., Tomlinson, H. and Xu, 

C. 2015. Physical Parameter Identification of Structural 

Systems with Hysteretic Pinching. Computer-Aided Civil 

and Infrastructure Engineering, 30, 247-262. 

Zhou, C., Chase, J. G., Rodgers, G. W. and Iihoshi, C. 2017. 

Damage assessment by stiffness identification for a full-

scale three-story steel moment resisting frame building 

subjected to a sequence of earthquake excitations. Bulletin 

of Earthquake Engineering, 15, 5393-5412. 

Zhou, C., Chase, J. G., Sun, J. K. Q., Tawhai, M., Möller, K., 

Heines, S. J., Bergmans, D. C., Shaw, G. M. and Desaive, 

T. 2021. Virtual Patients for Mechanical Ventilation in the 

Intensive Care Unit. Computer Methods and Programs in 

Biomedicine, 199, 105912. 

 


