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Abstract:
A geometric model and related methods to easily define patient specific vertebral body models
have been introduced in our previous studies. This paper proposes an angle measurement method
that can be fully automated after the definition of the patient specific vertebral body model. A
Principal Component Analysis based algorithm allowing the quick identification of the symmetry
plane of the human spline is also developed and described. The clinical dataset used to analyse
and validate the models and methods introduced consists of 39 patients’ lumbar section of the
spinal column with 195 vertebrae.
In terms of angle measurement the proposed geometric model and the measurement method is
proven to be accurate enough for clinical diagnostics, the average mean value of the measurement
error 0.15◦ and 0.75◦ comparing the measurements to the two reference datasets. The average
standard deviation of the error was around 2.50◦ that is almost the same as the average standard
deviation of the two reference datasets (2.34◦).

Keywords: Geometric modelling, symmetry plane definition of human spinal column, principal
component analysis, vertebral body model, automated angle measurement

1. INTRODUCTION

Multi-purpose reference databases of spinal column anatomy
consisting of commonly used diagnostic parameters, e.g.
specific angel between anatomical structures, bone vol-
umes, etc. have several benefits in human research and
clinical diagnostics (Zhou et al. (2000)). However, the
creation of these databases is challenging due to the time
consuming manual processing of the clinical data. In our
recent study (Bazso (2020)) a geometric model and related
methods to easily define patient specific vertebral body
models have been introduced that can facilitate the cre-
ation of such diagnostic databases and effectively support
the clinical diagnosis (Bazso et al. (2021)).

Supporting orthopaedic diagnostics by angle measurement
automation on 2D and 3D medical images is an inten-
sively researched area due to its benefits on medical care.
The angle measurement on 2D radiographs (Tu et al.
(2019)) is more common as recognizing 2D projections of
the bones is more accessible than the segmentation and
identification of the 3D bone structures (Tu et al. (2019)).
Both traditional image processing methods (Safari et al.
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(2019)) and artificial intelligence methods (Horng et al.
(2019) and Cho et al. (2020)) are applied in the automated
angel measurement procedures. However, all the proposed
methods require manual intervention (Safari et al. (2019)
and Allen et al. (2008)). In the case of 3D image based
measurement it is an additional challenge to identify the
plane used for the measurements, which should be prac-
tically the symmetry plane of the spinal column in the
non-pathological cases.

This paper proposes an angle measurement method that
can be fully automated after the definition of our patient
specific vertebral body model suggested in our previous
articles (Bazso (2020) and Bazso et al. (2021)). The tech-
nique can be used to create clinical diagnostic parameters
of the human spine automatically. The automation re-
quired identifying the symmetry plane of the human spine
that will serve as a measurement plane. Thus, a Principal
Component Analysis based algorithm allowing the quick
identification of the human spline’s symmetry plane is also
proposed.

The paper presents the clinical dataset used to validate
and analyse the proposed models and methods consists
of 39 patients’ lumbar section of the spinal column with
195 vertebrae. The reference data base included 15 dif-
ferent bone surface angle measurements for each patient
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Fig. 1. Flowchart of sampling point generation

measured by two clinicians. The symmetry plane identifi-
cation algorithm is validated using five randomly selected
patients.

The subsequent section will introduce the symmetry plane
identification algorithm and its parameter optimization,
the details of the clinical dataset, and the validation meth-
ods applied. The measurement results and the comparison
of the results with the reference dataset is presented in
Section 3. It is followed by the discussion of the results in
Section 4. The results are summarized in the last section.

2. METHODS AND DATA

2.1 Geometric model and modelling framework

The geometrical modelling of the vertebral body was done
using the model introduced in our recent studies (Bazso
(2020) and Bazso et al. (2021)). The model is defined
by geometrical curves, more precisely with B-splines and
quadratic functions. The benefit of the mathematically
defined curves over a triangular mesh is the ability to
evaluate the curve at any point without loss of precision.
The model is defined by marking key anatomical points in
three parallel planes. The outline of the vertebral body’s
base plates are marked to correctly represent the shape and
height of the anatomical structure. In order to model the
dent of the vertebral body’s side a third plane is necessary
in between them. In the next step a B-spline is fitted on the
markers in each plane thus creating the two base plate’s
model. The best fitting curve is selected by minimising the
distance of the curve from the markers. The side of the
vertebral body is modelled by connecting these B-splines
with a curve defined by a quadratic function.

The framework used for the modelling was an environment
originally built for aortic valve modelling and simulation
(Umenhoffer et al. (2018)). Although the task is different
from medical perspective, there are lot of similarities in the
engineering requirements. Both of them are a modelling
task, where a model has to be co-registered with the
medical image.

2.2 Angle measurement automation

In medical practice the angles of the vertebral column are
measured in the central sagittal plane, that goes through
the symmetry axis of the vertebral bodies (Kehr (2015)).
Usually the frameworks used in clinical practice enable the
medical expert to rotate the image in order to properly
align it. This process requires some practice and manually
measuring all the angles could be time consuming.

In the first step of the automatic angle measurement
process the symmetry plane of the spinal column has to be
determined. The shape of the vertebral body’s base plate

can be approximated with an ellipse. Therefore, by fitting
an ellipse on the points of the base plate the symmetry
axis can be determined.

The angles are measured in the sagittal plane by calculat-
ing the plane and the B-spline’s intersection points. These
points designate the line that lays on the sagittal plane
and the vertebral body’s base plane. In the final step the
angles of these lines are calculated thereby measuring the
angle of the different base plates of the vertebral bodies.

2.3 Symmetry plane definition method

The steps of the symmetry axis fitting algorithm is shown
in Fig. 1. In the initial step points are generated in a square
shape on a grid. Then the grid is scaled to match in size
with the B-spline of the base plate and the points outside
the curve are discarded. The ellipse fitting is done with
PCA (principal component analysis) using these points.

PCA is usually used for dimension reduction to change
the basis of the coordinate system and use only the most
significant dimensions of the converted coordinate system.
The first basis given by the PCA will be the vector defining
the line that fits best to the given points, i.e. minimises
the average square distance of the points from the line.
All other bases will be orthonormal with the previously
defined ones. They are created on the same way as the
first one. The first two bases could be used to define the
best fitting ellipse for the given points in the plane defined
by the first two dimensions. Since our points always sit on
a plane PCA could be used for the ellipse definition in our
case.

There are several ways to calculate the PCA with given
points, in our implementation we used SVD (Singular
Value Decomposition). SVD is used for matrix factoriza-
tion in linear algebra. To calculate the PCA with SVD
the data has to be centred. This is achieved by calcu-
lating the mean value of the point’s coordinate and then
subtracting the result from each point’s coordinate. The
first principal component gives the symmetry axis’s nor-
mal of the vertebral body’s base plate. In the next step
the intersection point of the symmetry axis and the B-
splines are calculated. With each vertebra this process
yields 4 points on the symmetry plane of the vertebra.
To position the sagittal plane a plane fitting algorithm
was implemented. This process takes the aforementioned
4 points of each vertebra and fits a plane using the above
introduced PCA. The third component will represent the
direction that is perpendicular to the plane meaning it
is an optimal candidate for being a normal vector of the
sagittal plane.



2.4 Validation and parameter optimisation of symmetry
plane definition

Without reference data that could be used as ground
truth in the validation of the symmetry plane method
we developed a process to get quantitative result. To
measure the achieved result we exported the model and its
mirrored version on the symmetry axis as a voxel array.
Then compared the two binary voxel array by evaluating
a dice coefficient. Higher value means a better fit on the
symmetry axis. This value is below 100%, because 100% is
only achievable if the vertebrae are perfectly symmetrical.

It is important to find the ideal number of points for
this algorithm. By selecting too few points the plane
at the end will represent poorly the vertebral bodies
symmetry axis. In contrast selecting too many points
will not increase the precision, but will slow down the
process due to the computation intensive algorithm. We
were looking for the point where the diminishing return
made unnecessary to increase the point count. For the
quantitative comparison of the volumes we applied the
commonly used Dice coefficient.

2.5 Dataset

CT images for this study were selected from patients’
record who were subject to a full body CT scan. They
were examined in an 8 year period between 2012-2020 in
the National Trauma Center. The patient were selected
from three different age groups (20-31, 31-40 and 40-
51 year-old), in each group there were 7 male and 6
female subjects. The selection process had two criteria.
First all patients in this study were scanned in supine
position, second any patient with spinal column injury
or other degenerative changes on the vertebral column
were excluded. The anonymisation of the CT scans were
performed according to GDPR.

The reference dataset were created by measuring the
selected angles manually using the medical software in the
hospital.

3. RESULTS

3.1 Optimal parameters and accuracy of the symmetry
plane definition

The optimization steps are detailed in Section 2.4. Five
patients were selected to define the optimal number of
sampling points used for the PCA calculation in the
symmetry axis fitting algorithm. We evaluated the Dice
coefficient (as introduced in Section 2.4) with 3 different
versions of the method. Fig. 2 shows the achieved results,
16 sampling points yielded poor results, while 144 had no
practical benefit over the case with 64 sampling points,
that were used later in the study.

The accuracy measurement process was detailed in Section
2.4. Table 1 shows the achieved Dice coefficients when 64
points were used. All of the measured values are over 88%,
meaning the plane represents the symmetry plane with
high degree of precision.
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Fig. 2. Precision of the symmetry plane identification with
different number of sampling points

Table 1. Dice coefficients with 64 points

Subject01 Subject02 Subject09 Subject28 Subject30

94.0% 91.4% 88.4% 92.0% 96.2%

Fig. 3. Measured angles on the lumbar section of the spinal
column

3.2 Measured diagnostic parameters

15 angles of the lumbar section of the vertebral column
was selected for this analysis. These angles were chosen
to contain at least one measurement for both base plates
of each vertebrae. Fig. 3 shows in a sagittal plane the 15
angles, while Table 2 lists all 15 angles along with the
minimum and maximum measured value in the dataset.

Fig. 4 shows the measured angles separately for male
and female subjects organized in age groups. Although
one specific angle shows great variation even in the same
gender and age group they follow the same trend, due to
the curvature of the lumbar lordosis.

3.3 Results of the automated measurements

The angle measurement were validated by comparing the
model’s result with the manually measured angles. The
medical tool used for the measurement had 1.0◦ precision.
This means the best achievable angle difference between
the angle calculated from the model and the reference is
0.5◦.



Table 2. Measured angles on the lumbar section of the
spinal column

Angle Min [◦] Max [◦]

Sacrum - L05 TOP 16.0 34.9
Sacrum - L04 TOP 26.7 52.6
Sacrum - L03 TOP 34.7 65.4
Sacrum - L02 TOP 36.6 73.8
Sacrum - L01 TOP 32.5 76.0
Sacrum - L01 BOT* 38.1 87.4

L01 TOP - L05 BOT** 14.4 63.4
L01 TOP - L05 TOP 5.6 50.2
L01 BOT - L05 TOP 11.2 54.9
L01 BOT - L05 BOT 18.5 74.9
L01 BOT - L02 TOP*** -2.2 16.8
L02 BOT - L03 TOP*** -2.8 12.1
L03 BOT - L04 TOP*** -1.4 12.7
L04 BOT - L05 TOP*** 5.2 19.0
L05 BOT - Sacrum*** 6.0 24.1

*Lumbar lordosis angle
**Lumbar lordotic angle

***Wedge angles
Positive value represents posterior direction

while negative value corresponds to anterior direction.
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Fig. 4. Measured angles for 21 spinal columns

Using the mean value and the standard deviation a normal
distribution is fitted to the data, in Fig. 5 and 6 the CDF
(Cumulative Distribution Function) of each measured an-
gles is shown.

Table 3 shows the mean and the standard deviation each
of the fitted normal distributions and also the average
of those two statistical parameters. Since we had two
reference measurements the measurement error is shown
for both of the references (reference#1, reference#2) and
the statistical parameters of the difference between the
two references are also presented. As it can be clearly
seen based on the statistics the measurement error is
in the same value range than the uncertainty of the
reference data. The measurement angles are definitely in
the physiological range reported in other studies (van der
Houwen et al. (2010)). The measurement error is in the
same range or lower than reported measurement error in
similar studies (Langensiepen et al. (2013)).
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4. DISCUSSION

By analysing the measured angles (Fig. 4) a trend can be
seen where the angle between the Sacrum and the different



Table 3. Difference between measured and reference
angles

Ref1-Meas Ref2-Meas Ref2-Ref1

Angle Mean Std Mean Std Mean Std

Sacrum-L05 TOP 0.21 2.37 -0.02 1.86 -0.23 2.02

Sacrum-L04 TOP -0.27 2.27 -0.58 2.22 -0.31 2.36

Sacrum-L03 TOP -0.35 2.43 -1.07 2.19 -0.72 2.09

Sacrum-L02 TOP -0.56 2.58 -1.36 2.54 -0.79 1.96

Sacrum-L01 TOP -0.18 2.65 -1.95 2.54 -1.77 1.91

Sacrum-L01 BOT -1.56 2.66 -0.92 2.69 0.64 2.31

L01 TOP-L05 BOT 1.84 2.67 -1.80 2.29 -3.64 2.95

L01 TOP-L05 TOP 0.56 2.64 -1.93 2.78 -2.49 2.60

L01 BOT-L05 TOP -1.02 2.62 -1.02 3.38 0.00 3.47

L01 BOT-L05 BOT 1.01 2.74 -0.07 2.16 -1.08 2.31

L01 BOT-L02 TOP -1.05 1.96 0.57 2.01 1.62 2.55

L02 BOT-L03 TOP 0.00 2.33 0.13 2.14 0.13 2.27

L03 BOT-L04 TOP 0.14 2.31 0.19 2.53 0.05 1.93

L04 BOT-L05 TOP -0.44 2.34 -0.78 2.45 -0.33 1.97

L05 BOT-Sacrum -0.62 2.60 -0.64 2.24 -0.03 2.39

Means: -0.15 2.48 -0.75 2.40 -0.60 2.34

vertebrae of the spinal column increases from the bottom
base plate of the L05 to the top one on L01. This correlates
with the physiological curve of the lumbar section of the
vertebral column, where the lumbar lordosis dominates.

Fig. 5 and 6 describes the absolute angle difference be-
tween the reference dataset and the calculated angle from
the model. Majority of these curves has a mean value
between minus one and one, where zero would be the ideal
value. However, there are some curves that lies outside
this range. It is worth to mention that the angles studied
in this paper are not independent from each other. The
reason is that some angles share a common arm when the
same vertebra being used in multiple angle measurements.
This is most notable with Sacrum - L01 Bottom and L01
Bottom - L02 Top angles, because both show extreme
deviation from the ideal curve.

Table 1 summarises the precision of the automatic symme-
try plane fitting algorithm. With average score of 92.4%
it is considered exceptional taking into account the fact
that the vertebrae are not perfectly symmetrical. Fig. 2
showed us that the optimal number of points are near 64,
from there increasing the point count does not provide any
practical benefit. One of the key factors in the effectiveness
of this algorithm is the usage of multiple vertebrae in the
fitting process thereby reducing the effect caused by the
low precision in the process of finding the symmetry plane
of a single vertebra.

The angle calculation process only takes a few seconds,
but it requires a geometrical model. The definition of
this model takes considerable amount of time, but it
can be used for other purposes than angle measurement,
as well. One of the key benefit of performing the angle
measurement based on the model is the reproducibility.
Other advantage over the traditional angle measurement
process is that it preserves addition. This means by adding
angle L01 Top - L02 Top and L02 Top - L03 Top the result
will be the angle of L01 Top - 03 Top. This assumption
will not be fulfilled with traditional angle measurement
process because it is possible that the medical professional
marks the L02 Top slightly differently when measuring the
two angles.

Fig. 7. Uneven surface of the vertebral body’s base plate
cause difficulty with both modelling and manual angle
measurement

Currently the modelling process is time-consuming which
makes its application impractical when the only goal is
to determinate the angles. The modelling of the lumbar
section of the spinal column requires on average one hour
(12 minutes / vertebra), while measuring these angles with
a clinical framework takes 15-20 minutes. In the future our
goal is to improve the model definition process to decrease
the time required for it.

The greatest difficulty in modelling and manual angle
measurement is caused by the uneven vertebral body base
plate surface, because the modelling process fits a plane,
while the angle measurement fits a line on the vertebra.
One example for this is shown in Fig. 7.

In our study we analysed 39 peoples CT image. The ex-
amination of the patients were done in the same hospital.
Previously in a smaller study (Bazso et al. (2021)) we
validated the model on a different database. The modelling
in the current study was performed by 3 people. In the
future to present the robustness of the model we would like
to validate our model on images from different sources and
model the same spine by multiple experts to determinate
the reproducibility of the process.

5. CONCLUSION

In this study the geometric model and diagnostic pa-
rameter measurement methods have been validated using
clinical dataset consisting 21 male and 18 female patients
and total of 195 vertebrae. For the automatic measurement
of the commonly used diagnostic angles of the lumbar
spine principal component analysis based symmetry plane
definition method of the spinal column is defined and also
validated using the clinical data.

In terms of angle measurement the proposed geometric
model and the measurement method is proven to be
accurate enough for clinical diagnostics, the average mean
value of the measurement error 0.15◦ and 0.75◦ comparing
the measurements to the two reference datasets (Table 3).
The average standard deviation of the error was around
2.50◦ that is almost the same as the average standard
deviation of the two reference datasets (2.34◦).

Based on the results presented the proposed geometrical
model and the related geometrical model is found to be



appropriate for semi automated processing of human CT
scans of the spinal column. The model based volume
measurement method has been validated in a previous
study( Bazso et al. (2021)), the angle measurement in
this current study. Based on these results it is possible
to initiate the development of a larger scale multi purpose
reference database of the spinal column anatomy. Valida-
tion on a larger scale database would be beneficial and
necessary before direct application of the methods in the
clinical practice. However, based on the results presented
the proposed methods could be directly applied in clinical
diagnostics and research.
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