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Abstract: This paper is aimed to develop and test one novel and unexplored enhancement
of the classical model reduction method applied to a class of biochemical networks. Both
methods, being (i) the standard quasi-steady-state approximation (QSSA), and (ii) the so-called
delayed-QSSA methods are extensively presented. Specially, the numerical issues related to the
setting of constant delays are discussed. Finally, for one slightly modified version of an enzyme-
substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced
system behavior with respective variants of reduced model is presented and future prospects are
proposed.
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1. INTRODUCTION

Any biochemical reaction network can be described by one
of two approaches leading either to: (i) the stoichiometric,
or (ii) kinetic models, e.g. Flach and Schnell (2006). While
the stoichiometric model is based on the time-invariant
properties of the reaction network (reaction kinetic scheme
or pathway scheme), known as its connectivity and deter-
mined by stoichiometric matrix S (in some sense describ-
ing the topology of reaction network, e.g. such drawn in
Fig. 1), the time-dependent kinetic model is based on the
law of mass action stating that the rate of each elemen-
tary reaction (νi) is proportional to the product of the
concentrations of reactants, where the corresponding pro-
portional constant is a reaction rate (ki), Ciliberto et al.
(2007). The number of reactions constitutes the dimension
of the reaction rate vector ν. Consequently, the system of
ordinary differential equations (one ODE for every species
in the network, including transitory complexes) can be
systematically derived using the multiplication of the so-
called stoichiometric matrix S by the reaction rate vector
ν, Schnell (2014). Moreover, when dealing with many re-
actions system, some reactions can be classified as fast,
some are in between, and some are slow. The existence of
slow-fast phenomena in the network represents difficulties
for numerical simulation of all species in the network,
however, on the other hand, opportunities to reduce the
system order through singular perturbation methods, see
Snowden et al. (2017); Khalil (2018); Isidori (1995); Rehák
et al. (2009).
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Hence, due to the timescales separation of respective slow
and fast reactions, the simplification of the ODE system
by certain order reduction is possible. One of the most
famous examples of such reduction is Briggs and Haldane’s
application of the quasi-steady-state (QSS) assumption for
the simplification of an enzyme-substrate reaction network
leading to Michaelis-Menten (MM) kinetics, see Briggs and
Haldane (1925); Segel (1988); Segel and Slemrod (1989)
and references therein. Based on different QSS assump-
tions different QSS approximation (QSSA) 1 methods have
been proposed, e.g. standard, reverse and total QSSA in
Eilertsen and Schnell (2020) and zero-derivative principle
in Härdin et al. (2009).

Different other ways of analyzing the system leading to
the model reduction have been discussed by Snowden
et al. (2017). Eliminating parameters noticed to be the
least sensitive in affecting the model comprises the idea
of sensitivity analysis Zi (2011). Presented in the 1960s
by Kuo and Wei (1969); Wei and Kuo (1969) the lump-
ing method uses the replacement of a group of state
variables from the system with a new dynamical vari-
able (lumped), related to the original system by lump-
ing functions Okeke (2013); Pepiot-Desjardins and Pitsch
(2008). Another known method of model order reduction
- proper orthogonal decomposition, completed with the
discrete empirical interpolation method - was applied to
kinetic models of biological systems with different initial
conditions by Eshtewy and Scholz (2020). This method,
based on Galerkin projection, obtains the minimum error

1 The nomenclature for the QSSA abbreviation is not unequivocal.
In order to follow the main stream paved by e.g. Flach and Schnell
(2006); Schnell (2014), we stick on term approximation within QSSA
abbreviation, contrarily to Vejchodský (2014).



between the original model and its reduced representa-
tion. However, considering as an optimal linear approach,
proper orthogonal decomposition may represent a restric-
tion for nonlinear systems, as the complexity of the full
order model remains in this case. The approach called
the discrete empirical interpolation method can be used
to overcome the complexity for nonlinear terms in the dy-
namical system. A new model reduction method based on
a simple stepwise reduction in the number of “complexes”,
which are defined as the left and right-hand sides of the re-
actions in the network is represented by Rao et al. (2014).
The error integral, quantifying how much the behaviour of
the reduced model deviates from the original, is used to
monitor the effect of this stepwise reduction. The model
reduction method, analysed in our research, have been
applied to a circadian rhythms modelling by Vejchodský
(2013) already. It could be used to the modelling of signal
transduction and cellular communication mechanisms, like
Mitogen-Activated Protein Kinase (MAPK) cascades, as
well.

As follows, in Section 2, instead of providing an exhaustive
general description of the QSSA methods and its vari-
ants, we introduce only two of them: (i) the standard
QSSA and (ii) the novel and unexplored delayed-QSSA
(D-QSSA) recently formulated in Vejchodský (2014) for
a class of biochemical networks. Afterwards, in Section 3,
one illustrative example (some extension of classical en-
zyme catalyzed reaction) is employed to reveal both the
problem complexity and the comprehensive account of the
numerical issues related to the novel D-QSSA technique.
Finally, in Section 4, we resume our efforts and trace the
directions for subsequent investigations.

2. STANDARD QSSA AND D-QSSA: TWO MODEL
REDUCTION METHODS

Our aim was to present and promote the novel exten-
sion of the quasi-steady-state approximation method. The
delayed-QSSA (D-QSSA) method was introduced in Ve-
jchodský et al. (2014); Vejchodský (2014) for a class of
mass action models with a wide timescale separation. We
analysed an initial value problem for a system of ordi-
nary differential equations (ODEs) that describes the time
course of state variables (species concentrations) within a
biochemical reaction network with the mass conservation
property.

First, let us consider a general fast/slow ODE system

ε ẋF = fF (xS , xF ; ε),
ẋS = fS(xS , xF ; ε),

(2.1)

when 0 < ε � 1. Then, the components of xF ∈ RnF

are called fast variables and xS ∈ RnS are called slow
variables, see Isidori (1995); Khalil (2018). Furthermore,
the above ODE system can be approximated with a
simpler algebro-differential system (the associated slow
subsystem)

0 = fF (xS , xF ; 0),
ẋs = fS(xS , xF ; 0).

(2.2)

While in the singular perturbation theory, the above equa-
tions (2.2) are called singularly perturbed, in biochemical

literature, such a model reduction is called as (standard)
quasi-steady-state approximation and the underlying as-
sumption (0 < ε� 1) assuring small approximation error,
i.e. the validity of the standard QSSA, is often referred
to as the reactant-stationary assumption, see Eilertsen
and Schnell (2020). A number of mathematical studies
was dedicated to quantify the accuracy of different QSSA
methods applied to enzyme kinetics, e.g. Segel (1988);
Segel and Slemrod (1989); Eilertsen and Schnell (2020).
Common to these efforts is the identification of a pre-
sumably small parameter ε, cf. (2.1), which quantify the
timescale separation. Naturally, this explicit identification
of a suitable ε for every individual system and operating
conditions requires non-trivial mathematical operations.
Consequently, when one tries to omit such analysis, the
non-justified use of QSSA method represents in fact its
abuse, see Flach and Schnell (2006).

Here, for a class of biochemical networks with the
mass conservation property, we present how the so-
called delayed-QSSA (D-QSSA) method Vejchodský et al.
(2014); Vejchodský (2014) can be successfully used with-
out the necessity to identify an “ε-based” condition for its
validity. Obviously, there is another parameter of D-QSSA
method, i.e. a delay, which should be determined through
an optimization procedure.

2.1 Reformulation of governing equations for biochemical
networks with the mass conservation property (getting
negative M-matrices)

Based on the mass conservation properties, the non-linear
ODE (2.1) could be represented as a linear system with
the system matrix of special form of a negative M-matrix.
To the best of our knowledge, this approach was proposed
in Bohl and Marek (2005) and further extended into the
framework of control theory in Marek (2009).

Based on the assumption that all state variables are
involved in the conservation properties, the general form of
governing ODE system for modified state variable vector
x̃(t) is

dx̃(t)

dt
= Mx̃(t), (2.3)

with the block diagonal system matrix of special form
(negative M -matrix when the sum of all columns are zero),
see Stuart (2013) and references therein.

The reformulation of ODEs according to (2.3) has a
little importance for the numerical calculation, however, it
assures the fulfillment of all three suppositions demanded
in Vejchodský (2014), hence it has rather the theoretical
importance for further analysis of D-QSSA method.

Quasi-steady state assumption for a class of mass action
models

Definition 1. Assuming a timescale separation for the
rates of species evolution in a biochemical network (2.3),

the state vector is partitioned, i.e. x̃(t) = ( xF (t) xS(t) )
T

and the ODE system has the form

ẋF (t) = f(xS(t))− g(t)xF (t),
ẋS(t) = h(xF (t), xS(t)).

(2.4)



The reduced system via standard QSSA is

xF (t) =
f(xS(t))

g(t)
,

ẋS(t) = h(xF (t), xS(t)).
(2.5)

2.2 Delayed quasi-steady state assumption (D-QSSA)

The standard QSSA method for model reduction is valid
only where the timescale of fast species is significantly
shorter than the timescale of the others (presumably) slow
species. Analysing the error of the standard QSSA method,
the authors in Vejchodský et al. (2014) noted that in the
original system the fast variables always need a certain
amount of time to reach their quasi-steady states, i.e. to
get the slow invariant manifold (SIM). Therefore, if the
quasi-steady state changes (due to change in the slow
variables), the corresponding fast variable should reach
the new value of the quasi-steady state with a certain time
delay, while, if the original system is reduced by the QSSA,
the fast variables stay in their quasi-steady states and the
time delay is neglected. Thus, Vejchodský et al. propose
to solve the discrepancy between the original and reduced
systems by introducing time delays to the standard QSSA.
This novel approach is called as the delayed quasi-steady
state assumption (D-QSSA).
Definition 2. Assuming a timescale separation for the
rates of species evolution in a biochemical network (2.3),

the state vector is partitioned, i.e. x̃(t) = ( xF (t) xS(t) )
T

,
when xF (t) is vector composed from nF fast variables and
xS(t) is vector composed from nS slow variables.

The non-reduced ODE system has the form

ẋF (t) = f(xS(t))− g(t)xF (t),
ẋS(t) = h(xF (t), xS(t)),

(2.6)

and its reduction via delayed QSSA is

xqssF (t) =
f(xS(t− τ))

g(t− τ)
,

ẋS(t) = h(xqssF (t), xS(t)),
(2.7)

where τ = 1
g(t) .

The theorems concerning the equivalence of the D-QSSA
method to the first-order correction of QSSA (up to terms
cubic in delay τ) and the theorems dealing with the D-
QSSA error estimates, i.e. differences between the solution
of non-reduced system and its D-QSSA approximations,
are presented in Vejchodský et al. (2014).

Further, in this section, we shall study the problem of an
optimal setting of constant delays τ for a system of ODEs
where two timescales exist. Hence, after two remarks, we
propose one Lemma dealing with the optimal choice of
constant delays for D-QSSA method.
Remark 1. The reduced system via D-QSSA (2.7) approx-
imates the invariant (slow) manifold of system (2.6) up to
terms quadratic in τ Vejchodský et al. (2014), thus, in case
of constant and small τ the D-QSSA is equivalent to the
standard QSSA (or SPM) and the delay can be avoided. If
the delay is not small then there is no theoretical reason
for the application of QSSA, however, the D-QSSA still
has the potential to yield acceptable accuracy (as it will be
shown in the next section).

Fig. 1. Graph representation of the action of an enzyme
catalyzed reaction with external (periodic) adminis-
tration of a substrate. Reaction nodes (rectangles)
identified by Ri represent reactions between circular
species nodes (identified by capital letters).

Remark 2. The delay τ(xS(t)), introduced for a system
in form of (2.7) in Definition 2, depends generally on the
other (slow) components of the system. Thus, it evolves in
time. This fact may cause some numerical issues when
solving delayed differential equations by a computer al-
gebra system. This problem was solved by the following
Lemma 1, firstly announced in our work, Papacek and
Lynnyk (2021).
Lemma 1. For a system in form (2.7), there exists a
constant delay τ ≡ τ∗ minimizing the error between the
non-reduced system (2.6) and the reduced system (2.7). I.e.

τ∗ = arg min
τ∈R+

||x(t)− x̃(t, τ)|| subject to τ ≤ τ(t) ≤ τ .

(2.8)

Proof. Based on the specific form of the system under
study, the discrepancy between the full and reduced sys-
tem can be minimized, having τ constant as the argument
for the optimization problem. Natural bounds for the delay
constant are the minima and maxima of the function τ(t)
defined accordingly to (2.8).

Remark 3. Vejchodský et al. emphasize that xqssF (t) is
designed to approximate the long-time behaviour of the
fast variable xF (t). If the independent variable t is close
to zero then approximation (2.7) is still defined, but the
quantity (t− τ(t)) can be negative. Therefore, technically,
the functions f and g have to be defined for negative
values of t as well. Consequently, for small values of t,
the approximation xqssF (t) depends on arbitrary extensions
of f and g to negative values. Thus, it cannot be expected
a good approximation of xqssF (t) for t close to zero.

3. NUMERICAL EXAMPLE

In this section, two model reduction methods, namely
standard QSSA (2.5) as well as its refinement, i.e. D-QSSA
(2.7), are applied to one simple biochemical network with
mass conservation property, encompassing mass (substrate
X) transport and containing enzymatic reactions. The ini-
tial value problem for corresponding non-linear system is
formulated in (3.5), with initial conditions and parameter
values from Tab. 1.

3.1 Enzyme catalyzed reactions with a substrate transport
chain: S and Γ matrix

ODE system (3.5), i.e. the system of differential equations
describing the process under study, depicted in Fig. 1
and Tab. 1, can be systematically derived using the so-
called stoichiometric matrix S ∈ Rn×q (q is the number of
reactions) in some sense describing the topology of reaction



network. The vector of changes in species concentrations
x ∈ Rn is then described as linear transformation of the
reaction rate vector ν ∈ Rq: ẋ(t) = S ν(x, k).

Let us underline, that the first component of the rate
vector, ν1 = k0(x1 − x2), is set based on the Fick’s law. 2

The other components of the rate vector ν are determined
by the law of mass action, i.e. the rate of change of a
species (involved in a particular reaction) is proportional
to the product of reaction rate constant and concentration
of species involved in the reaction:

S =

R1 R2 R3 R4


−1 0 0 0
1 −1 1 0
0 −1 1 1
0 1 −1 −1
0 0 0 1

, (3.1)

ν =

 k0 (x1 − x2)
k1 x2 x3
k−1 x4
k2 x4

 . (3.2)

Reaction networks frequently possess subsets of reactants
that remain constant at all times, i.e. they are referred as
conserved species. Generally, there exists a conservation
matrix Γ (its dimension is h × n), the rows of which
represent the linear combination of reactants constant in
time. It can be solved explicitly for large systems (0 =
Γ S). For our case of S in form of (3.1), the conservation
property reads

x3 + x4 = e0,
x1 + x2 + x4 + x5 = u0.

(3.3)

Consequently, here

Γ =

(
0 0 1 1 0
1 1 0 1 1

)
. (3.4)

The existence of two relations (3.3) signifies not only the
possibility to reduce the number of state variables, but it
also induces the reformulation of the governing equations
for species concentration using negative M-matrices.

3.2 Governing equations for enzyme catalyzed reactions
with time dependent administration of a substrate

A biochemical reaction kinetic model for the action of
an enzyme catalyzed reactions with time dependent (e.g.
periodic) administration of a substrate is schematically
given in Fig. 1 and further described in Tab. 1 and Tab. 2.
Basically, the resulting ODE system models two compart-
ment system and in fact is composed as the combination
of one ODE describing the transport of a substrate from
exterior to interior compartment with one of perhaps the
most well-known biochemical reaction network leading to
the Michaelis-Menten kinetics, see Briggs and Haldane
(1925).

2 The flow of species X from an exterior compartment, e.g. dosing
device, to the interior compartment (where the enzymatic reaction
takes place) depends on the difference of species X concentrations
(x1−x2) and the proportionality constant is the first order diffusion
coefficient k0, the so-called permeability constant encompassing the
permeability coefficient and area of the membrane.

Table 1. Description of the transport and reac-
tion process schematically depicted in Fig. 1.

Description of the related process Chem. notation

R0: Substrate Xext dosing (u(t) input) ∅ → Xext

R1: Substrate transport (param. k0) Xext 
 Xint

R2: Enzyme E binds to substrate, Xint + E 
 C
formation of a complex C (param. k1)
R3: Reverse reaction to R2 (param. k−1)
R4: Complex breaks into E plus P C → E + P
– altered substrate molecule (param. k2)

Table 2. Model parameters values, units and
descriptions, initial conditions and inputs;

mostly from Eilertsen and Schnell (2020).

Param. Value Unit Description

k0 10 sec−1 permeation coefficient
k1 10 µM−1 sec−1 association rate

(forward rate constant)
k−1 10 sec−1 dissociation rate

(reverse rate constant)
k2 0.01 sec−1 association catalitic rate

KM
k−1+k2

k1
µM Michaelis constant

s0 10 µM init. substrate concn.
e0 1 µM init. enzyme concn.

u0 10 µM dose per period

Introducing the new notation for state variables, i.e. a size
five vector x according to

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

 ≡


Xext(t)
Xint(t)
E(t)
C(t)
P(t)

 ,

the system of differential equations describing the process
under study is usually written in the following form

ẋ(t) = Ax(t) +B(t), (3.5)

with the constant matrix (the linear part of the system)

A =


−k0 k0 0 0 0
k0 −k0 0 k−1 0
0 0 0 k−1 + k2 0
0 0 0 −(k−1 + k2) 0
0 0 0 k2 0

 , (3.6)

and the vector representing nonlinear (quadratic or bilin-
ear) and constant (zero order) parts

B(t) =


u(t)

−k1 · x2(t) · x3(t)
−k1 · x2(t) · x3(t)
k1 · x2(t) · x3(t)

0

 . (3.7)

The initial conditions (at the beginning of the first cycle)
are

x(0) = ( u(t0) 0 e0 0 0 )
T
. (3.8)

Model parameters are summarized in Table 2.

3.3 Comparison of different model reduction methods

The ODE system (3.5) can be simplified applying the just
mentioned conservation properties (3.3). Moreover, it is to
be expected an algebraic relation (slow manifold) between
substrate concentrations in both compartments. The illus-
trative figure (made in sw Wolfram Mathematica) Fig. 2
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Fig. 2. The parametric plot in phase plane x1(t) vs. x2(t)
for the full non-reduced system (black full line) and
three lines representing three solutions using D-QSSA
for 3 different values of delay τ .

confirms this expectation. I.e., slow invariant manifold can
be detected for the fast variable x1: x1 = x2, valid for
the interval x1 ∈ (0, 5). This manifold is reached after
an initial transition when the trajectories corresponding
to respective methods differ, cf. Fig. 2 – the result for
the full non-reduced system (black full line) and three
solutions computed based on D-QSSA (represented by
three lines with the growing value of delay τi (from up
to down: τ1 = 1

k−1+k2+k1s0
≈ 0.02 – thin orange line,

τ2 = 0.05 – dotted red line, resp. τ3 = 0.1 – dashed
blue line). The transitory interval needed to equalize the
concentrations x1 and x2 ends for ttr ≈ 0.2, cf. the point
x1 = x2 = 5 = s0/2, then (for t > ttr) all trajectories lie
on the slow manifold defined by the relation x1 = x2.

Thus, using the relation x1 = x2 (for t > ttr), we can
further analyze the dynamics of substrate and complex
concentrations in the interior compartment only, i.e., x2(t)
vs. x4(t). The illustrative figure (made in sw Wolfram
Mathematica) Fig. 3, shows the parametric plot in phase
plane x2(t) vs. x4(t). Here, the solution of full non-reduced
system is represented by the full black line and the slow
invariant manifold resulting from the standard QSSA,
while taking the state variable x4 as the (other) fast
variable, is represented by the dashed red line. Although
in a certain time interval is the difference hardly visible,
there is the initial and final part where both trajectories
differ. Here is the room for finding an optimal constant
delay using D-QSSA method.

In order to measure the quality of approximate solutions
xA(t) we used the integral error metric comparing the
outputs of the non-reduced and the reduced models 3

3 In our numerical experiments we consider a time interval t ∈ [0, T ]
and suppose an equidistant mesh t0, t1, . . . , tm, with the time step
∆t = T/m.
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Fig. 3. The parametric plot in phase plane x2(t) vs. x4(t)
for the full non-reduced system (full black line) and
the slow invariant manifold (dashed red line) given by
the condition ẋ4 = 0.

δi =

m∑
j=0

||xi(tj)− xAi (tj)||
||xi(tj)||

, i = 1, . . . , 5. (3.9)

In (3.9), the “exact” data xi(tj), j = 0, 1, . . . ,m, are
computed values using the non-reduced model (full sys-
tem) (3.5) and xAi (tj), j = 0, 1, . . . ,m, i = 1, . . . , 5, are
approximate solutions computed from models QSSA4, and
D-QSSA4 (for the reduced fast variable x4 using standard
QSSA and delayed D-QSSA).

The following Tab. 3 gives the values δi computed for state
variables xi(t), i = 1, . . . , 5, and two considered models.
Indeed, using the D-QSSA method we obtain smaller error
than using standard QSSA.

Table 3. Computed errors δi for state variables
xi(t) corresponding to different models.

model i = 1 i = 2 i = 3 i = 4 i = 5

QSSA4 0.0771 0.0943 0.3664 0.1214 187.2839
D-QSSA4 0.0136 0.0172 0.1423 0.0471 34.2719

4. CONCLUSION

We presented and further developed one novel technique
of model reduction for a class of biochemical reaction
networks. This technique has the potential to fill the gap
between merely heuristic QSSA methods (in all theirs
variants) and more theoretical methods, like singular per-
turbation methods. The assumptions for D-QSSA are not
too restrictive and D-QSSA is applicable to the majority
of biochemical systems based on the law of mass action.
While the standard QSSA (or SPM) ignores the time
needed by fast variables to reach their steady states, the
advantage of D-QSSA is the possibility of a time delay
introduction in order to improve the accuracy of approx-
imation. This general conclusion has been supported by
our example presented in Section 3.



Because the time varying delays may cause some difficul-
ties in both numerical solution and subsequent theoretical
analysis, we have treated the case of an approximation of
the varying delay by a constant one. The essential first step
for both the standard QSSA and the D-QSSA is the iden-
tification of the fast variables. However, in some systems
none of the variables can be considered as fast, while a
suitable combination can. Here, for the Michaelis-Menten
enzyme kinetic network, the slow-fast variables separation
and the condition for the validity of standard QSSA is well
known. The expected advantage of the technique of the D-
QSSA is the extension of D-QSSA to the model parameter
domain prohibited for the standard QSSA.

Finally, an appealing feature of the D-QSSA (in compar-
ison with the standard QSSA) is its suitability for oscil-
lating systems. While the standard QSSA usually causes
considerable errors in both the period and amplitude of
oscillations the D-QSSA enables this error to be reduced
substantially, cf. Vejchodský et al. (2014). It copes with
our ongoing research devoted to the optimization of dosing
regimes.
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