
Real-Time Estimation of Lung Model
Parameters and Breathing Effort During

Assisted Ventilation

Thomas Schauer ∗ Olaf Simanski ∗∗

∗ Technische Universität Berlin, Control Systems Group, 10587 Berlin,
Germany (e-mail: schauer@control.tu-berlin.de).

∗∗ Hochschule Wismar - University of Applied Sciences: Technology,
Business and Design, Computational Engineering and Automation

Group (CEA), 23966 Wismar, Germany
(e-mail: olaf.simanski@hs-wismar.de)

Abstract: The estimation of lung mechanics’ parameters and the patient’s residual volitional
breathing effort is a prerequisite to adjust the parameters of assisted ventilation in a patient-
individual manner. A real-time capable approach is investigated that estimates the resistance
and compliance of a first-order lung model in conjunction with the intrapleural pressure in
real-time. Latter is a measure for the patient’s breathing effort. A signal generator model in
the form of a Radial Basis Function (RBF) network is assumed for the intrapleural pressure.
The Gaussian basis functions are periodic with the breathing cycle duration. This approach
does not restrict the signal form of the patient-driven pressure curve. Recursive Least Squares
(RLS) with selective forgetting is employed to consider the different dynamics of the estimated
model parameters. A time-discrete version of the lung model is used for RLS. Computer
simulations reveal that the approach is feasible and that selective forgetting is necessary to
obtain satisfactory estimation results.
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1. INTRODUCTION

The individualisation of medical technology has become
increasingly important in recent years. On the one hand,
the population is getting older and older and still wants
to continue living in their own four walls. On the other
hand, respiratory diseases are on the rise. Especially in
the age of the worldwide COVID-19 pandemic, special
attention is being paid to non-invasive ventilation. In
(Ashish et al., 2020) it was shown that, where clinically
possible, early use of CPAP (continuous positive airway
pressure) therapy, including inpatient use, can significantly
improve the outcome of patients from respiratory disease.
CPAP therapy continues to be used for the treatment of
obstructive sleep apnoea syndrome (OSAS). A patient-
adapted therapy, and thus a less disruptive therapy, in-
creases the acceptance of this significantly. Russel (2000)
as well as Simonds (2006) show how important correctly
adjusted parameters are for the treatment of OSAS or in
general for assisted non-invasive ventilation. Both for early
weaning from ventilation and for the treatment of OSAS
it is important to know the individual characteristics of
each lung and the proportion of self-breathing correctly.
This can be determined by defined tests, such as the high
oscillation method, but this is not always goal-directed
and possible. Online identification seems more promising.
In (Shi et al., 2016) and (Albanese et al., 2013), a simple
modelling approach is described, which is explained below.

Shi et al. (2016) and Albanese et al. (2013) have presented
an online identification approach for the lung parameters R
and C using Recursive Least Squares (RLS). In addition,
Albanese et al. (2013) and Scheel et al. (2018) estimate
the patient’s breathing. Albanese et al. (2013) imply the
intrapleural pressure in their algorithm, but they assume
it to be a slowly changing parameter of the underlying
regression model. Their estimates for R and C converge
very slowly. Scheel et al. (2018) use a Kalman filter with a
sinusoidal signal model. This allows faster estimation but
restricts the form of the intrapleural pressure.

The approach described in the contribution goes beyond
this, and makes it possible to estimate the proportion of
self-breathing independently of the ventilation waveform.
A Radial Basis Function (RBF) network with periodic
Gaussian functions is used as a signal generator model
for the intrapleural pressure. Hence, the signal shape can
be arbitrary. This allows a faster estimation of R and C as
well as the intrapleural pressure, using the Recursive Least
Square (RLS) approach from (Albanese et al., 2013) with
selective forgetting to account for the different dynamics
of the parameters. Our solution is based on a time-
discretised model and requires as inputs the pressure at the
entrance of the airway and the lung volume determined by
numerical integral of the measured flow. Drifting volume
estimation, due to a bias in the flow measurement, and an
unknown volume at the beginning of the integration do
not pose a problem for the identification approach. The



estimation of the patient’s own breathing is important for
the design of individualised control approaches, as seen in
(Scheel et al., 2018), among others.

The paper is organised as follows. Section 2 introduces the
lung model and the signal generator model of the breathing
effort before the estimation algorithm is described. After-
wards, the results of a computer simulation are reported in
Section 3. Finally, Section 4 gives a discussion, conclusions,
and an outlook.

2. METHODS

2.1 Lung Model

The following first-order linear model can approximate the
breathing mechanics (Albanese et al., 2013; Bates, 2009):

paw(t) =RlV̇ (t) +
1

Cl
V (t) + ppl(t) + p0 (1)

Here, paw is the airway entry pressure, Rl is the air-
way resistance, Cl is the lung compliance and V (t) is
lung volume. The lung is surrounded by the pleura. Self-
breathing is modelled by the intrapleural pressure source
ppl. p0 is an offset to account for the fact that at the

end of exhalation (V̇ ≈ 0 and ppl ≈ 0) the respiratory
volume V (tend expiration) is equal to the functional residual
capacity VFRC:

p0 = −
VFRC

Cl
+ paw(tend expiration)︸ ︷︷ ︸

pe

. (2)

Figure 1 shows the electrical analogue of this lung mechan-
ics model.

If only the respiratory flow V̇ is measured, the volume
difference Ṽ (t) = V (t) − V (0) can be determined by
numerical integration where V (0) is the unknown lung
volume at time instant t = 0. This gives

paw(t) =Rl
˙̃V (t) +

1

Cl
Ṽ (t) + ppl(t) + p0 +

1

Cl
V (0). (3)

Hence, the lung dynamics be written as

+

–

Fig. 1. Electrical analogue of the lung mechanics model.

˙̃V (t) =−
1

ClRl︸ ︷︷ ︸
α

Ṽ (t) +
1

Rl︸︷︷︸
β

(paw(t)− pe)−
1

Rl︸︷︷︸
β

ppl(t)

+
1

ClRl
(VFRC − V (0))︸ ︷︷ ︸

γ

. (4)

For the sampling index k and the sampling period ∆ one
can derive the following discrete-time MISO-ARX model
assuming constant input variables paw and ppl over the

sampling interval (Åström and Wittenmark, 1997):

Ṽ (k) = eα∆︸︷︷︸
a

Ṽ (k − 1) +
β

α
(eα∆ − 1)︸ ︷︷ ︸

b

(paw(k − 1)− pe)

−bppl(k − 1) + bγ︸︷︷︸
d

+ζ(k) (5)

The input ppl is assumed to be unknown and will be
estimated later together with the offset d and coefficients
a and b. The offset term takes into account slow changes
in VFRC and integrator drift due to offset errors in the flow
measurement. ζ represents measurement noise.

2.2 Signal Generator Model for Intrapleural Pressure

A parameterised signal generator model for the pressure
of the pleura is assumed in the form of a Radial Basis
Function (RBF) network:

ppl(k − 1,κ) = κTw(k) (6)

The parameters of the model are contained in the vector
κ ∈ Rn. The vector w ∈ Rn contains the values of n basis
functions, which have as an argument the sampling index
k. The basis functions are Gaussian functions with the
variance σ and the mean values µi + l(Ti + Te):

wi(k) = e
−

1

2

(
∆k − l(TI + TE)− µi

σ

)2

, i = 1, . . . , n. (7)

The integer

l = floor(∆k/(Ti + Te)) (8)

yields a periodicity of the basis functions with the respira-
tion cycle, which is assumed to be constant. Here Ti is the
inspiration duration and Te is the expiration duration. The
time k = 0 coincides with the beginning of an inspiration
phase. The µi are chosen as

µi =
(i− 1)Ti

(n− 1)
, i = 1, . . . , n. (9)

2.3 Assisted Ventilation

In the case of controlled positive pressure ventilation, the
pressure pi > 0 is applied during the inspiration phase.
During the expiration phase, a small positive pressure pe

(PEEP - Positive End-Expiratory Pressure) is maintained
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Fig. 2. Pressure curves over six breathing cycles.

to keep the airways open. Ventilation is supportive to the
patient’s weak spontaneous breathing and is triggered by
a flow increase.

2.4 Real-Time Estimation

For simultaneously estimating the parameters of the lung
and pleural pressure generator model, the discrete-time
ARX model (5) can be expressed as a linear regression
model

Ṽ (k)︸ ︷︷ ︸
y(k)

= (a b bκ1 . . . bκn d)︸ ︷︷ ︸
ΘT


Ṽ (k − 1)

paw(k − 1)− pe

−w1(k)
...

−wn(k)
1


︸ ︷︷ ︸

ϕ(k)

+ζ(k) (10)

with a, b and d defined in (5). Here, y(k), Θ, ϕ(k) and
ζ(k) are the measured output, the parameter vector, the
regression vector and the measurement noise, respectively.
Real-time estimation of the parameters and thus intrapleu-
ral pressure can be established by applying the recursive
least squares method. Forgetting will be used to take into
account the time-variant system behaviour. In order to
assign an individual forgetting factor to each parameter
according to its dynamics, the following modified RLS pro-
cedure with selective forgetting can be applied (Albanese
et al., 2013; Saelid and Foss, 1983):

L(k) =
P (k − 1)ϕ(k)

1 +ϕT (k)P (k − 1)ϕ(k)

Θ̂(k) = Θ̂(k − 1) +L(k)
[
y(k)−ϕT (k)Θ̂(k − 1)

]
P (k) = Λ−1

[
P (k − 1)−L(k)ϕT (k)P (k − 1)

]
Λ−1

Here Λ ∈ R(n+3)×(n+3) is the diagonal matrix with the
vector [√

λRC

√
λRC

√
λpl11×n

√
λRC

]
(11)

Table 1. Initial simulation model parameters.

Parameter Value

Rl 15 cmH2O/L/s
Cl 0.05 L/cmH2O
p0 -35 cmH2O
pi 20 cmH2O
pe 5 cmH2O
Ti 2 s
Te 2 s

Noise variance of measured flow 0.0001 L2/s2

on its diagonal. λRC defines the forgetting factor for
the slowly changing parameters a, b and d (Rl and Cl

can be determined from the first two). The value λpl is
used for all faster changing model parameters related to
the intrapleural pressure. All forgetting factors λi, i ∈
{RC,pl}, lie in the range (0, 1] with typical values close
to one.

The RLS algorithm will be initialised with estimates
obtained from an initial least squares estimation taking
N > (3 + n) samples into account. The RLS is therefore
activated after collecting the firstN input/output samples.
N should be chosen to cover at least one inspiration phase.

Using the definitions of a, b, α and β (see (4) and (5)),
the estimated lung model parameters and the intrapleural
pressure are then obtained by

R̂l =
∆(â− 1)

b̂ ln(â)
(12)

Ĉl =−
b̂

â− 1
(13)

p̂pl(k) =
ĉ

b̂
w(k) (14)

The vector ĉ = b̂κ̂ is part of the RLS-estimated parameter
vector Θ̂ (cf. (10)).

3. RESULTS

The proposed online estimation has been tested in com-
puter simulations with the postulated simple lung model
using Matlab/Simulink 2021a (The Mathworks Inc.,
USA). Assumed initial model parameters are listed in
Table 1. With a PEEP of pe =5 cmH2O, the resulting
functional residual capacity is VFRC=2 L. The compliance
changes with a ramp from 0.05 to 0.06 L/cmH2O from
63 to 66 s. The resistance changes after 25 s from 15 to
10 cmH2O/L/s.

Fig. 2 shows the curves for paw and ppl that are used in the
simulation over the first six breathing cycles. Ventilation
always starts 200 ms after detected spontaneous breath-
ing. Self-breathing effort is sinusoidal in the inspiratory
phase (maximum value Ppl=–10 cmH2O) and is modu-
lated (multiplied) over time with a sinusoidal waveform
(0.25-0.75, frequency 0.075 Hz) to simulate changes.

ppl(t) = Ppl sat1
0

(
sin

(
2πt

Ti
− π

2

3

))(
sin

(
2π3

40
t

)
1

4
+

1

2

)
Please note, that this equation is only valid for the
assumed case Ti = Te.
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Fig. 4. Identification results (λRC = 0.97, λpl = 0.97).

The applied parameters of the RLS with selective for-
getting are shown in Table 2. Fig. 3 shows the resulting
Gaussian basis functions wi, i = 1, . . . , n, over two breath-
ing cycles. The inspiration and expiration phases are two
seconds each.

The Figures 4 and 5 show the simulation results obtained
with the same forgetting factor for all parameters. In both
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Ĉl

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

R
es

is
ta

n
ce

[c
m

H
2
O

/L
/s

]

Rl

R̂l

0 10 20 30 40 50 60 70 80 90 100

Time [s]

-10

-8

-6

-4

-2

0
In

tr
ap

le
u
ra

l
p
re

ss
u
re

[c
m

H
2
O

]
ppl

p̂pl

Fig. 5. Identification results (λRC = 0.985, λpl = 0.985).

Table 2. RLS settings. Three different settings
of λpl and λRC are simulated.

Parameters Value

∆ 0.01 s
n 10
σ 0.2 s
N 250
λpl 0.97 0.985 0.97
λRC 0.97 0.985 0.985

cases no satisfactory estimation can be obtained. With
λpl = λRC = 0.97 the forgetting factor is too small
and all estimates contain undesired high frequent signal
components. A reduced forgetting with λpl = λRC = 0.985

improves the result for R̂l slightly, but Ĉl and p̂pl still show
unsatisfactory results. Further reduction of the forgetting
(increase of λpl = λRC) yields less fluctuations in Ĉl and

R̂l but offset errors while the higher frequent dynamics of
the intrapleural pressure cannot be captured.

By choosing less forgetting for parameters linked with Cl

and Rl and more forgetting for parameters linked with p̂pl,
the results shown in Fig. 6 can be obtained. Changes in
Cl, R̂l and p̂pl over time can be successfully tracked in
real-time.

Fig. 7 shows the estimate p̂pl for the different forgetting
settings in a selected time window.
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Fig. 6. Identification results (λRC = 0.985, λpl = 0.97).
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4. DISCUSSION AND CONCLUSIONS

The proposed approach is computationally simple. It al-
lows the real-time estimation of lung parameters and the
intrapleural pressure from pressure and integrated airflow
measurements only. The proposed method is robust for
changes of the functional residual capacity VFRC and slow
drift of the lung volume caused by bias-affected flow mea-
surements. The usage of a radial basis function network
with periodic Gaussian functions to estimate voluntary
respiration is a major innovation of this approach. It is

assumed that the related pressure curve ppl is periodic, and
that expiration is purely passive. The signal form within
a period can be arbitrary and can change slowly from
breathing cycle to breathing cycle. An implementation
of the algorithm on embedded systems is straightforward
due to the approach’s simplicity. The feasibility of the
approach has been demonstrated in computer simulations.
It could be shown that selective forgetting needs to be
employed to achieve satisfactory estimation results.

Limitations are the simplified lung model and the assump-
tion of a fixed inspiration and expiration period. A contin-
uous adaptation of the periodic Gaussian basis functions
for slowly changing breathing cycle duration can be im-
plemented. Future work should validate the approach with
a complex lung simulator (TestChest, ORGANIS/AQAI,
Switzerland/Germany) before applying the method on ex-
perimental data or in closed-loop systems with patients.

The approach can also be used as a biomedical example for
RLS with selective forgetting inside university courses on
system identification as its complexity is well manageable
for students.
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