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Escuela Superior Politécnica del Litoral, ESPOL, Neuroimaging and
Bioengineering Laboratory, LNB, Campus Gustavo Galindo km 30.5

Vı́a Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
(e-mail: {kpaviles,htrivino,jatobrun,floayza}@espol.edu.ec)

∗∗∗Department of Electromechanics, Systems and Metals Engineering,
Ghent University, Tech Lane Science Park 125, B-9052 Ghent,

Belgium (e-mail: ricardoalfredo.cajodiaz@UGent.be)
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Abstract: This work presents the experimental design for recording Electroencephalography
(EEG) signals in 20 test subjects submitted to Steady-state visually evoked potential (SSVEP).
The stimuli were performed with frequencies of 7, 9, 11 and 13 Hz. Furthermore, the
implementation of a classification system based on SSVEP-EEG signals from the occipital region
of the brain obtained with the Emotiv EPOC device is presented. These data were used to train
algorithms based on artificial intelligence in a Raspberry Pi 4 Model B. Finally, this work
demonstrates the possibility of classifying with times of up to 1.8 ms in embedded systems with
low computational capacity.
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1. INTRODUCTION

In recent years, extensive research has been developed in
robotic systems based on brain-computer interface (BCI).
These systems provide the user a communication channel
that allows obtaining from the strength of brain waves
to communicate the user’s intention to external devices,
transforming into a computer-controlled signal. These
studies have focused on improving or replacing physical
functions in people with motor disabilities (Alcivar-Molina
et al., 2018, Han et al., 2018). In this context, the non-
invasive electroencephalography (EEG) techniques have
been used widely to capture brain activity to be used
as the source data for BCI, mainly by the high time
resolution and low-cost method (Chen et al., 2019, Erkan
and Akbaba, 2018). Despite that, many BCI applications
based on EEG data, the data acquisition is highly noise
susceptible, mainly for the low-cost EEG devices such
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as blinking, relative movement between the scalp and
electrodes, impedance changes between the scalp and the
surface electrodes, adipose tissue, and hair. To overcome
these difficulties, the artificial intelligence (AI) technique
has been used to reduce the complexity of noisy data
and increase data classification accuracy. Most of the BCI
works based on low-cost devices are focused on binary
data classification such as the 2D virtual wheelchair con-
trol (Huang et al., 2012), or to obtain hand movements
directions (Chouhan et al., 2018, Ghaemi et al., 2017),
EEG based prosthetic arm (Fuentes-Gonzalez et al., 2021),
and much other research works. In this line, some works
carried out a process of feature extraction to the filtered
EEG signals using temporary windows of data to vectors
containing relevant information. This reduction in the di-
mensionality of the information makes it possible to reduce
the computational cost and in some cases improve the ac-
curacy of the classification algorithms (Artoni et al., 2018,
Asanza et al., 2017). The classification of EEG signals
has made it possible to develop brain-computer interface



(BCI) applications, assisting people with reduced capacity
problems by controlling electronic, robotic, or prosthetic
devices, (Asanza et al., 2020). Most of the assistance
studies to classify the subject’s intention with reduced
abilities use EEG data recorded from the region of the
motor cortex (Al-Saegh et al., 2021). Alpha waves from the
frontal region of the brain (Fischer et al., 2018) or also the
Brain activity recorded in the occipital region of the brain
during steady-state visually evoked potential (SSVEP)
(Shao et al., 2020). Therefore, the main challenges for the
EEG BCI devices are the low information transfer rate,
the high error rate, and the development of multiclass
EEG data classification techniques, especially for data
coming from those low-cost devices. Thus, in this work,
we propose a methodology to employ machine learning
techniques using a low-cost raspberry to capitalize on the
advantages of artificial intelligence in order to process the
EEG data captured from an Emotive headset device to
classify five different subjects’ intention to be used in any
control devices.

In this work, the acquisition of EEG signals from the
occipital region of the brain is performed during visual
stimuli applied to the test subjects. Furthermore, an
EEG signal pre-processing method is used to remove
noise components and a feature extraction mechanism to
classify and determine the visual stimulus that the test
subject is observing. The pre-processed data is used to
extract characteristics for later classification of intentions.
Section III details the dataset used. The pre-processing
methodology, feature extraction, and clustering algorithms
applied are described in section IV. Then, section V
shows the results with the different clustering algorithms
used with the pre-processed dataset. Finally, section VI
summarizes the discussion results and conclusions.

2. RELATED WORK

Previous research in this field has made it possible to
establish slightly more effective methods to address the
different challenges such as acquisition, pre-processing,
analysis, and classification of EEG signals.

2.1 Acquisition of SSVEP EEG signals

There is a remarkable tendency in using flickering visual
stimuli interfaces, assigning a unique frequency to an
action, which allows to recognize the user’s intentions.
The optimal frequency range for the classification of such
signals has been a research topic alone. The existence
of different types of brain waves is known now to vary,
depending on the individual’s cognitive activity and level
of attention, (Khosla et al., 2020).

Some studies scan brain alpha waves with favorable re-
sults, using a frequency band between [8-16] Hz. In these
cases the acquisition of SSVEP EEG signals focuses on the
activity of the occipital and parietal regions of the subject
with a high classification rate (Han et al., 2018). Other
authors have extended their research to analize beta wave
for a range of [5-20] Hz in the front parietal and occipital
regions. This requires more computational capacity for the
data processing device (Zhang et al., 2015).

2.2 Pre-processing

During the experiment there are different external signal
sources that do not originate in the brain, known as
artifices. These signals can have a negative influence the
waves obtained (Khosla et al., 2020). For this reason, prior
to the analysis of the signals obtained in the acquisition
step. It is convenient to develop a pre-processing stage to
organize the data and eliminate any error.

Among the multiple techniques used to eliminate inter-
ference produced by power supply line, DC artifices or
unwanted frequency components. The authors apply dig-
ital Noch type filters (Chen et al., 2018), Butterworth
filter (Erkan and Akbaba, 2018), (Waytowich et al., 2018),
Wavelet Denoising methods (Shao et al., 2020), (Chen
et al., 2019), etc. Some studies, apply additional algo-
rithms to remove linear data trends (Chen et al., 2018).

2.3 Analysis of SSVEP EEG signals

After data pre-processing, the literature refers to the
extraction of features as a way to facilitate the signal
analysis in time or frequency domain (Khosla et al., 2020).
Recently, features used by authors in EEG signals research
have been Signal-to-Noise Ratio (SNR) (Chen et al., 2019),
phase Locking Value (PLV) (Han et al., 2018), Minimum
Energy Combination (MEC) (Erkan and Akbaba, 2018),
Maximum Evoked Response (MER) (Zhang et al., 2015),
Amplitud Spectrum (Chen et al., 2015), among others.

In addition, there are standardization methods to obtain
values as Z-Score (Erkan and Akbaba, 2018), used to scale
features results. This makes possible their comparison and
selection of a set of characteristics, that achieves a high
rate of accuracy.

2.4 Feature Selection

In prior applications, several feature selection methods
are applied, these post-processing methods choose relevant
features that contribute to a successful classification of the
user’s intentions, resulting in an increase in the quality of
the later results, (Khosla et al., 2020).

2.5 Classification methods

In the final processing stage, previous research describe
different ways to classify features obtained in previous
steps. Canonical Correlation Analysis (CCA)-based algo-
rithms have been widely adopted due to the obtained
accuracy; previous research through Filter Bank Canon-
ical Correlation Analysis (FBCCA) has achieved 91.78%,
accuracy, with a sample of 12 study subjects and the use
of 10 electrodes, (Chen et al., 2018). In addition there
is Support Vector Machine (SVM), a set of supervised
learning algorithms with existing results in 88% of cases,
with the help of 9 test subjects, (Zhang et al., 2015).

In recent years there has been a good opening to the use
of ANN for this processing stage, a successful classification
was achieved in 80% of the tests, in this experiment
a Compact Convolutional Neural Network (CCNN) was
used, (Waytowich et al., 2018).



Fig. 1. Run setup during data acquisition

3. DATASET

3.1 Experiment organization

Thanks to the management of the neuroscience research
group and the ethics committee of the Tencia University
of Machala (UTMACH), twenty adult subjects (no gender
discrimination) were recruited between the age of 20 and
35. The subjects were received by the personnel in charge
of carrying out the experiment. Staff will avoid wearing
brightly colored clothing that distracts subjects’ attention
during the experiment.

The personnel in charge of the experiment respected the
COVID-19 biosecurity measures , this measures ordered
by the Ministry of Public Health of Ecuador’s Govern-
ment include: mandatory use of masks, ventilated ex-
perimentation area, contact surfaces properly disinfected,
as well as cleaning all utensils used before and after
each experiment. (https://www.salud.gob.ec/medidas-de-
proteccion-basicas-contra-el-nuevo-coronavirus/)

The area where the experiment will be conducted was
completely clean, with natural light, white walls without
pictures or drawings that distract the subjects’ attention.
The test environment has air conditioning system at 25
degrees Celsius. During data recording, in some cases low-
level noises were reported between 30 and 55 decibels (dB)
from sources such as air conditioning and occasionally the
vehicle passage that provided very low noise between 10
and 30 db.

Each subject received and signed an informed consent
indicating that their participation in this study is strictly
voluntary and anonymous. In addition, subjects are in-
formed that the data collected will be confidential and
their use is exclusive for research purposes. No personal
information was disclosed.

The subjects were asked to sit in a reclining and com-
fortable armchair with their upper limbs placed on the
armrests of the armchair and with an elbow angle of
145 degrees. On the other hand, the lower limbs will be
arranged at a 90-degree angle to their thighs. For the
experiment, a 17” monitor was placed alined with the eyes
of the test subject, at a distance of 1 meter from the head
of the subject. This can be seen in Fig. 1.

Fig. 2. Emotiv Epoc electrode layout

3.2 Acquisition device

The EEG signal registration Emotiv Epoc device was
placed in each subject, some of the technical descriptions
include a sampling frequency of 128Hz,this device has 14
electrodes and two ground references, distributed in the
international system 10 - 20 as shown in the Fig. 2.

During the EEG signal recording process, a conductive gel
was used to reduce the impedance between the electrodes
and the scalp which significantly improved the integrity
of the recorded signals. The details of the electrodes the
Emotiv EPOC device has are as follows:

• EEG.AF3: Electrode located in the frontal area of the
brain in the left hemisphere.

• EEG.F7: Electrode located in the temporal frontal
area of the brain in the left hemisphere.

• EEG.F3: Electrode located in the frontal area of the
brain in the left hemisphere.

• EEG.FC5: Electrode located in the central frontal
area of the brain in the left hemisphere.

• EEG.T7: Electrode located in the temporal area of
the brain in the left hemisphere.

• EEG.P7: Electrode located in the parietal area of the
brain in the left hemisphere.

• EEG.O1: Electrode located in the occipital area of
the brain in the left hemisphere.

• EEG.O2: Electrode located in the occipital area of
the brain in the right hemisphere.

• EEG.P8: Electrode located in the parietal area of the
brain in the right hemisphere.

• EEG.T8: Electrode located in the temporal area of
the brain in the left hemisphere.

• EEG.FC6: Electrode located in the central frontal
area of the brain in the right hemisphere.

• EEG.F4: Electrode located in the frontal area of the
brain in the right hemisphere.

• EEG.F8: Electrode located in the temporal frontal
area of the brain in the right hemisphere.

• EEG.AF4: Electrode located in the frontal area of the
brain in the right hemisphere.

3.3 Experimental methodology

Twenty healthy right-handed university students at Uni-
versidad Tecnica de Machala (UTMACH) were recruited.
Before starting the data acquisition, each test subject was
given very clear instructions on the tasks to be performed
and a short test session was conducted.The tasks that the
test subjects performed during the acquisition process are
described above, first the subject was asked to visualize



Fig. 3. Visual stimuli used during the experiment

the symbol ⊕ in the center of the screen to record the
Resting Task for 3.5 seconds. At that time the test subject
only visualizes the center of the fully relaxed monitor
without performing any tasks. As shown in the Fig. 3
four visual stimuli with a randonmy duration between 3
and 3.5 seconds each were shown to the test subject. The
sequence that includes the four visual stimuli and Resting
Task were shown 40 times to each test subject, below are
the specifications of the stimuli that indicate the task to
be performed by the test subject:

• 7Hz visual stimulus located at the top of the screen,
while the rest of the stimuli are dimmed by 80.
• 9Hz visual stimulus located at the bottom of the

screen, while the rest of the stimuli are dimmed by
80.
• Visual stimulus of 11 Hz located at the right side of

the screen, while the rest of the stimuli are dimmed
by 80.
• 13Hz visual stimulus located on the left side of the

screen, while the rest of the stimuli are dimmed by
80.

3.4 Recorded data

The number of test subjects who participated voluntarily
were twenty, with an average age of 27 ± 3 years old,
whose demographic information are as follows:

• Ten of the test subjects were ecuadorian.
• Ten of the test subjects were asian.

Each of the 20 test subjects performed sessions of eleven
minutes, during this time, they were shown 40 repetitions
of the sequence of the 4 visual stimuli (7 Hz, 9 Hz, 11
Hz and 13 Hz) and Resting Task. The programs used for
data acquisition were software Emotiv PRO and Matlab.
Emotiv PRO is the program that establishes the connection
between the device Emotiv EPOC via bluetooth and it saves
the records in a .csv file for each of the test subject. The
Matlab software is charge of displaying the visual stimuli
presented in Fig. 3 and to synchronize the MarkerValueInt
whose values are 1 - 5 where they indicate the moment in
which the test subject receives optical stimuli of 7Hz, 9Hz,
11Hz, 13Hz and Resting Task. The Fig. 4 represents the
architecture of the programs used during data acquisition.

Fig. 4. Structure of the codes used in the acquisition
process

This architecture generated a .csv for each test subject,
these twenty files are located on 1 EmotivData.zip file,
they are published on (Tinoco-Egas et al., 2021) on IEEE-
Dataport.

4. METHODOLOGY

After analyzing the twenty .csv files on the folder
1 EmotivData.zip subject number eleven data was re-
moved from the dataset since it had different acquisition
times than the rest of the subjects, this due to the low
voltage levels (battery level 1) of the data acquisition
equipment that were detected only in this test subject. The
nineteen .csv files were processed in Python, identifying
the MarketValueInt (Label), we proceeded to divide into
two hundred new .csv files (results of forty repetitions
and five stimuli) representing two hundred stimulus visu-
alization tasks stored in separate folders: 7Hz, 9Hz, 11Hz,
13Hz and Baseline (resting task). In addition, only the
EEG.O1, EEG.O2 electrodes were selected. The recorded
information was organized on a folder 2 Raw Data.zip,
available on (Tinoco-Egas et al., 2021) on IEEE-Dataport
through the following sub-folders:

• The folder ”7Hz” contains 748 .csv files.
• The folder ”9Hz” contains 754 .csv files.
• The folder ”11Hz” contains 756 .csv files.
• The folder ”13Hz” contains 759 .csv files.
• The folder ”Resting Task” contains 759 .csv files.

4.1 Data pre-processing

The aberrant values of each stimuli on 2 Raw Data.zip file
were delated. To do this, we used the IQR (Interquartile
Range) method, an aberrant value was considered to be
one that was outside the upper and lower limits previously
calculated by the aforementioned method, in addition, any
value with this condition was replaced by its closest limit.
In addition, a Butterworth filter (IIR) of order 20, band
pass, with a frequency limit of 5 Hz to 30 Hz was applied
to these data, this range includes the frequencies of the
visual stimuli comprised of 7 Hz to 13 Hz, the results are
on folder 3 Filtered Data.zip on (Tinoco-Egas et al.,
2021) on IEEE-Dataport.

Randomly, the dataset was divided into 70% for training
set, 15% for validation set and 15% for testing set. Data
augmentation was applied to the training set, adding white
noise with different amplitudes to the EEG signal. In this
way, we tripled the training set using white noise with
amplitudes of 0.5 and 5 (because they gave better results).



4.2 Feature extraction

For feature extraction the algorithm 1 was developed to
extract 21 features from the training, validation and test
sets: Mean, Mean - weight I, Mean - weight II, Log Detec-
tor, Median, Variance, Mean absolute difference, Mean fre-
cuency, Peak frecuency, Variance central frecuency, Maxi-
mum PSD, Amplitude Histogram (10 ranges).

Algorithm 1 Feature Extraction Algorithm

Result: Extracted features
for folder in DataFolders do

for files in folder do
for electrode in electrodes do

Apply extract features function to each file.
Add extracted features to a dataFrame.

end
end
Export dataFrame to csv format

end

For feature extraction, the training set without data aug-
mentation and the training set with data augmentation
were used separately. Then, in both cases the training
set features were normalized using sklearn’s MinMaxScaler
function, as shown in equation 1. Finally, the validation
and test sets were normalized with the Min and Max values
obtained from the training set.

Features(i)′ =
Features(i)−min(Features)

max(Features)−min(Features)
(1)

4.3 Classification configuration

The 21 extracted features from the EEG. O1 and EEG.O2
registered data were concatenated, obtaining 42 columns
of features that were the input data of the classification al-
gorithms: Support Vector Machine (SVM), Multilayer Per-
ceptron (MLP), Random Forest (RF), k-Nearest Neigh-
bors (KNN) and eXtreme Gradient Boosting (XGBoost)
(Yindong et al., 2021).

5. RESULTS ANALYSIS

In this section we will show the confusion matrix of the
proposed configuration and analyze the following parame-
ters of the classification algorithms:

• Recall: Probability of classifying true positives. The
parameters True Positive (TP), False Negative (FN)
are used for its calculation, as shown in equation 2:

Recall(%) =
TP

TP + FN
(2)

• Specifity: Probability of classifying true negatives.
The parameters True Negative (TN), False Positive
(FP) are used for its calculation, as shown in equation
3:

Specifity(%) =
TN

TN + FP
(3)

• Accuracy: Results proximity. The parameters True
Negative (TN), False Positive (FP), False Negative

(FN), True Positive (TP) are used for its calculation,
as shown in equation 4:

Accuracy(%) =
TN + TP

TN + FP + FN + TP
(4)

• Precision: Dispersion of the obtained set of val-
ues. The parameters True Positive (TP), False
Positive (FP) are used for its calculation, as shown
in equation 5:

Precision(%) =
TP

FP + TP
(5)

Binary classes combinations were as follows: (0) 7Hz and
9 Hz; (1) 7Hz and 11 Hz; (2) 7Hz and 13 Hz; (3) 9Hz
and 11 Hz; (4) 9Hz and 13 Hz; (5) 11Hz and 13 Hz. With
the proposed configurations the results obtained with all
classification algorithms are shown in table 1.

Table 1. Average testing classification results
obtained with testing set

Without data augmentation

Algorithm Accuracy% Recall% Precision% Specifity%

SVM 0.51 0.52 0.34 0.51
MLP 0.52 0.52 0.51 0.52
RF 0.54 0.48 0.54 0.59

KNN 0.51 0.51 0.56 0.51
XGBoost 0.49 0.49 0.52 0.50

With data augmentation

Algorithm Accuracy% Recall% Precision% Specifity%

SVM 0.55 0.55 0.57 0.55
MLP 0.51 0.51 0.55 0.52
RF 0.58 0.59 0.58 0.56

KNN 0.54 0.54 0.53 0.54
XGBoost 0.57 0.56 0.58 0.57

As shown in Table 2, training without data augmentation
and classification times were compared using the Rasp-
berry Pi4 B with all classification algorithms.

Table 2. Average training and classification
time using the Raspberry Pi4 B

Algorithm Training (Seg) Classification (ms)

SVM 9.47 16.58
MLP 32.1 1.8
RF 719.68 20

KNN 0.78 12.16
XGBoost 19.33 7.12

6. DISCUSSION AND CONCLUSIONS

The results showed that using the 21 features for each of
the EEG electrodes of the occipital region (O1 and O2)
was appropriate, allowing us to reach accuracy values of
58%. Using the training set without data augmentation,
among the 5 algorithms that were used are RF and MLP
whose accuracy values were 54% and 52%, respectively.
The results showed that there were an over-adjustment in
the classification algorithms, due to the limited number
of examples used during the training process (226). For
this reason, it was necessary to use data augmentation for
EEG signals with high temporal resolution is possible by
adding white noise with small and high amplitudes. The
use of this technique allows us to improve the accuracy of
the algorithms among which are RF and XGBoost whose
accuracy values ware 58% and 57%, respectively. On the



other hand, in applications that need real-time responses,
the algorithms that reported a shorter classification time
were MLP and XGBoost with times of 1.8 and 7.12
milliseconds, respectively.

It is recommended to have an adequate experimental de-
sign before proceeding with data registration, in addition
to having a proper data preprocessing since it is very
important when working with algorithms, because cleaner
data will help to improve the classification.

As future works, it is proposed to recruit more subjects
that allow us to increase data to eliminate over-adjustment
in the algorithms and for these to be able to generalize
with new examples. In addition, it is proposed to use Deep
Learning techniques (DL) combined with the extraction of
spectral images as a characteristic of the temporal behav-
ior of the EEG electrodes. These spectral images would
have a high spatial resolution and could be subjected to
Data augmentation techniques.
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