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Abstract: As a part of the BMS2021 Benchmark Challenge, this paper deals with the design
and testing of a closed-loop anesthesia delivery regulation system by exploiting the open-
source Matlab-based patient simulator. Because of system inherent complexity together with
intra- and inter-patient parameters variability and partially unknown disturbances, traditional
model-based approaches may suffer. To overcome these limitations, we opt for a data-driven
approach using real-time ultra-local models coupled with the corresponding so-called intelligent
controllers. In this way, one maintains the hemodynamic variables while regulating the levels
of hypnosis, analgesia, and neuromuscular blockade in anesthesia by automatic delivery of
drugs. The performance of the proposed approach has been evaluated in silico by considering
a representative dataset composed of 24 patients, the presence of disturbances mimicking both
surgical stimulations and actions of “anesthesiologist in the loop”, including also noise effects
and time-varying system delays.

Keywords: Anesthesia, Ultra-local model, Intelligent PID, Control, Simulation.

1. INTRODUCTION

In the Health 4.0 era, technologies such as automation,
robotics, sensors, IoT, cloud computing, Big Data, arti-
ficial intelligence, etc., are bringing a major change in
the healthcare industry, Aceto et al. (2020), Ghita et al.
(2020). In this scenario, modelling and simulation tools
offer new possibilities to dominate the complexity of cer-
tain biomedical applications and they enable to accelerate
innovation cycles, rapidly exploring and exploiting new
possible solutions. In particular, advanced control systems
play an important role in the bioengineering sector and it
is a common practice to design control algorithms in silico,
exploiting models that allow simulating the main relevant
system characteristics for the first assessment of different
control strategies. In the aforementioned context, as part
of the 11th IFAC Symposium on Biological and Medical
Systems (BMS2021), the benchmark challenge for the op-
timization of anesthetic and hemodynamic drug delivery
problem in an open-source simulated patient environment
enables the possibility of working on a relevant and com-
plex medical application, Ionescu et al. (2021). The main
goal is to maintain the hemodynamic variables while en-
suring a suitable level of depth of anesthesia. Due to the
intrinsic system complexity arising from multi-inputs and
multi-outputs, non-linearities, noise effects, delays, and
coupling effects, the design of suitable control systems is a
non-trivial task. Promising approaches have been proposed
in the literature to face this problem ranging from PID
control, Padula et al. (2017), to Model Predictive Control,
Ionescu et al. (2021), including Adaptive Control, Nino
et al. (2009). Most of these methods heavily rely on a priori
models that usually are difficult to calibrate and whose
parameters depend on intra- and inter-patient variabilities.

Moreover, the presence of uncertainties and disturbances
may reduce the control performance. To overcome these
limitations, this paper presents the use of a data-driven
control approach that does not require a priori knowledge
of the system behaviour, which has been proposed by
Fliess and Join (2013). The approach considers a gen-
eral structure for an unknown system using input-output
measurements to estimate unknown dynamics using ultra-
local models in an online fashion and then to generate
suitable control policies. The method has been successfully
applied to several control applications ranging from trans-
portation systems, Menhour et al. (2013) to refrigeration
systems, Rampazzo et al. (2017), including biomedical
systems, Bara et al. (2018). On the other hand, the avail-
ability of a model remains nevertheless irreplaceable at
this stage for control design and test tasks. By exploiting
the Open-source Virtual Patient Simulator, we design and
test a MIMO ultra-local model controller to maintain the
Mean Aortic Pressure (MAP) and the Cardiac Output
(CO) while regulating the level of depth of anesthesia. In
particular, the controller manipulates drugs infusions i.e.
Propofol, Remifentanil, and Atracurium to regulate the
Bispectral Index Scale (BIS), the Ramsay Agitation Score
(RASS), and the Neuromuscular Blockade (NMB). The
performance of the employed straightforward approach is
evaluated in simulations by considering a representative
dataset composed of 24 patients, noise effects, the presence
of disturbances mimicking both surgical stimulations and
actions of “anesthesiologist in the loop” including also
time-varying system delays. The paper is organized as
follows: Section 2 depicts the Patient Simulator; the ultra-
local model control is presented in Section 3; Section 4
shows simulation results in several operating conditions;
some concluding remarks are given in Section 5.



2. THE OPEN-SOURCE PATIENT SIMULATOR

The Matlab-based open-source Patient Simulator com-
prises, within its features, complex synergic and antago-
nistic interaction aspects between general anesthesia, i.e.
sedation, and hemodynamic variables. The first includes
hypnosis, analgesia, and neuromuscular blockade states,
while the latter includes cardiac output and mean arterial
pressure. The simulator includes a representative patient
dataset (24 patients with different ages, heights, weights,
etc.) and it can be profitably used for designing and testing
control algorithms. In particular, there is the possibility
to take into account up to 5 manipulated drug dosing
rates variables (i.e. Propofol, Remifentanil, Atracurium,
Dopamine, and Sodium Nitroprusside SNP) and up to 5
direct controlled variables (i.e. BIS, RASS, NMB, CO,
and MAP), along with numerous non-linear interaction
effects. The dose-effect response in the model is given by
a nonlinear Hill equation, which relates values of the drug
concentration profile with values of its effect. However, as
shown in Ionescu et al. (2015), during the maintenance
phase, the nonlinear Hill curve sigmoidicity reduces to
linear parameter dependence. The presence of surgical
stimulation, such as the arousal due to laryngoscopy, in-
tubation, incisions, periods of no stimulations, and total
stimulation withdrawing, lays to a nociceptor stimulation;
this stimulation is optionally mimicked in the simulator
as a disturbance at the output of the hypnotic state, i.e.
added to the BIS value. There is also the possibility to
enhance the realism of the scenario taking into account
the “anesthesiologist in the loop” effect; with the manual
intervention of the anaesthesiologist an additional input
signal, in form of drug boluses, is delivered to the system
as an anticipatory action of the anaesthesiologist itself
to partially compensate the expected disturbance profile,
Copot and Ionescu (2018). Another challenge for control
design is the presence of time delay in the BIS output since
BIS-controlled systems rely on the epoch-based estimation
of EEG time windows, Ionescu et al. (2010). Indeed, in
common practice, the quality of the epoch portions of
EEG signal is monitored through a signal quality index.
If for an epoch the value of the quality index is below
a threshold limit, then the current EEG window interval
is discarded, and the BIS value from the previous valid
window evaluation is provided as hypnotic level output.
This introduces a time delay that may vary between 10-
240 seconds. In the simulator, one can choose to have
a delay-free BIS signal, or a constant delay value of 30
seconds, or a variable time delay within the given interval.
The presence of this time delay on the BIS signal might
cause a significant decrement in the overall control system
performance. Further details of the patient simulator for
the design and the evaluation of drug dosing control in
anesthesia can be found in Ionescu et al. (2021).

3. ULTRA-LOCAL MODEL CONTROL

Unlike a priori global first-principle model-based ap-
proaches, the ultra-local model is an affine dynamic model
that involves the output y, a lumped unknown nonlinear
function F , the input u, and an input gain α. To put
it simply, let us consider a SISO causal system, whose
dynamic is nonlinear and affected by uncertainties. In

this scenario, the following phenomenological Ultra-Local
Model (ULM) describes the system behaviour in a suitable
short time interval Ts:

ẏ(t) = F (t) + αu(t), (1)

where the order of output derivative equals 1. In (1), F
contains all system structural information and it encom-
passes not only the unknown system structure but also the
disturbances; indeed, F depends on the initial conditions
and the unavoidable disturbances, and it can be estimated
via input and output measurements. Moreover, the gain α
is a non-physical parameter, which is typically chosen such
that ẏ and αu are of the same magnitude.

To regulate the system output y, the ultra-local model
controller, also known as intelligent PID controller, Fliess
and Join (2009), can be straightforwardly designed as
follows:

u(t) = α−1
[
ṙ(t)− F̂ (t) + C(e(t))

]
, (2)

where r(t) is the output reference trajectory, F̂ (t) is a real-
time estimate of F , while e(t) = r(t)− y(t) is the tracking

error. If F̂ is satisfactory, then by combining (1) and (2),
one obtains:

ė(t) + C(e(t)) = F̂ (t)− F (t) ≈ 0, (3)

where the unknown system structure and disturbances
vanish. The controller C is then chosen to ensure asymp-
totic stability, e.g. one can use a standard proportional
controller as follows:

C(e(t)) = Kpe(t), Kp > 0, (4)

obtaining the so-called ULM-iP, also known as Intelligent
P controller. It is worth noticing that, F̂ (t) − F (t) in (3)
can be viewed as an additive disturbance.

3.1 Estimation of ẏ and F

The employed control architecture leverages the estima-
tion of both ẏ and F . Given the measure of y, then ˆ̇y can
be inferred through the feedback scheme depicted in Fig.
1 where the integrator output has to track the reference y.
Indeed, the integrator input can be regarded as an estimate
for ẏ. In particular, a Robust Exact Differentiator (RED)
scheme is used, Levant (1998), employing the so-called
super-twisting algorithm:

ˆ̇y = z − a
√

|ξ| sign(ξ),

ż = −b sign(ξ).
(5)

where z is an auxiliary variable, whereas a and b are
positive constants. The reference error ξ, as well as its first
time-derivative, are forced to zero in finite time. Once ˆ̇y is
available, then F̂ can be computed from (1) as follows:

F̂ = ˆ̇y − αũ, (6)

where ũ is an approximate value of u and it is chosen to
avoid algebraic loops: e.g. it can be set to the value of the
manipulated variable in the last time step, i.e. ũ(t) = u(t−
Ts).

3.2 Time-delayed and MIMO Systems

Time-lag. If there is a shift in the effect of input on
output dynamic response, i.e. a delay L affects the system,



Fig. 1. Robust exact differentiator (RED) scheme.

the ultra-local model control may also be applied to
regulate the output by replacing (1) with:

ẏ(t) = F (t) + αu(t− L). (7)

MIMO. The ultra-local model control may also be
extended to regulate a n× n MIMO system where inputs
u1, u2, . . . , un and outputs y1, y2, . . . , yn turn out to be
naturally decoupled in n mono variable systems of type
(1). Therefore, n ULM-iP controllers, each of which has
the form of (2), are used. It is worth highlighting that, for

the i-th ULM-iP, F̂i is not necessarily independent of the
inputs u1, . . . , ui−1, ui+1, . . . , un.

4. NUMERICAL SIMULATIONS

The ultra-local model control (2)-(4) can be regarded as
a feed-forward control based on the local model in combi-
nation with a standard proportional controller Fig. 2. The
overall goal is to regulate BIS, RASS, and NMB within the
clinical intervals by manipulating Propofol, Remifentanil,
and Atracurium drugs infusion respectively, ensuring a
suitable level of depth of anesthesia, while maintaining
hemodynamic variables within the clinical intervals. More-
over, the minimum and maximum values for the inputs and
outputs are as follows: BIS interval [40,60]%, RASS score [-
4,-5], NMB [0,100]%, Propofol infusion [0,5]mgkg−1min−1,
Remifentanil infusion [0,2.5]mcgkg−1min−1, Atracurium
infusion [0,10]mcgkg−1min−1. The CO and MAP have
to be maintained within the intervals [4,6.5]lmin−1 and
[65,110]mmHg, respectively.

In the following simulation examples, by taking advantage
of the Patient Simulator as a tool to design and asses
control strategies, the ULM-iP control has been tuned
through trial and error procedures to ensure stability
and performance, Fliess and Join (2014), during both
the induction and maintenance phases of anesthesia. In
particular, the performance of the proposed approach
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Fig. 2. ULM-iP control architecture.

Fig. 3. The nociceptor stimulation profile and additional
bolus infusion as anticipatory action of the anesthesi-
ologist.

is evaluated by considering the representative dataset
composed of 24 patients, and the presence of disturbances
mimicking both surgical stimulations and the actions of
“anesthesiologist in the loop”, Fig. 3.

4.1 SISO Examples: Propofol-BIS

I) In this simulation example, the controller has to
maintain the depth of hypnosis at rBIS = 50% by
acting on Propofol infusion, assuming that the delay
affecting the Propofol-BIS interaction is negligible. We
compare the performance of the ULM-iP control (i.e.
C(e(t)) = Kpe(t)) and standard Porportional-Integral (PI)
controller (these two controllers are equivalent in some
sense). Figs. 4a, 4b, and 4c, depict BIS, Propofol infu-
sion, and the Integral Time Squared Error (ITSE) over
the time, respectively, for both controllers, during the
induction phases, related to the 24 patients. The ULM-
iP and PI controllers have been fairly tuned so that they
exhibit the same magnitude of overshoots. The ULM-
iP control responses are faster than the standard PI;
moreover, the ULM-iP control compensates the intra- and
inter-patient variations aligning the BIS responses, Fig.
4a, not exceeding the input constraints Fig. 4b, while
ensuring satisfactory performance in terms of ITSE mean
and standard deviation, Fig. 4c. Fig. 5 shows the F̂ over
the time related to the 24 patients. The PI standard
regulator is characterized by Kp=0.025mgkg−1min−1%−1

and Ki =0.0025mgkg−1min−1%−1s−1, while the ULM-iP
controller has parameters α= -1500%s−1kgminmg−1 and
Kp = −0.3mgkg−1min−1%−1.

Figs. 6a, 6b, and 6c depict the performance of both ULM-
iP control and standard PI during the maintenance phase
under the influence of both surgical disturbance and anes-
thesiologist action, like those shown in Fig. 3. The ULM-
iP control gives the best performance; indeed it maintains
the BIS within the admissible intervals while guaranteeing
good performance in terms of quick disturbance rejections
and ITSE.

II) In clinical practice, the BIS signal is affected by
measurement noise that can be modelled as an additive
white Gaussian noise, with zero mean value and a suitable
standard deviation. In this simulation example, the BIS
is affected by an additive noise with standard deviation
equals 6.27%, Padula et al. (2017). Figs. 7 depict the



(a) BIS regulation.

(b) Propofol infusion.

(c) Control performance: ITSE.

Fig. 4. BIS controlled by Propofol manipulation during
induction phase (24 patients): ULM-iP (blue) vs PI
(orange).

behaviour of both PI and ULM-iP controller. It is evident
that, even in this case, the performance of the ULM-iP is
better than that of standard PI, Fig. 7a, also thanks to
the presence of the intrinsic ULM-iP feed-forward action,
Fig. 7b.

III) For example purposes only, a uniformly distributed
random time-varying delay ∈ [0,30]s is taken into account
over the 24 patients during induction and maintenance
phases simulations, Fig. 8. The satisfactory behaviour and
performance of the ULM-iP controller are depicted in Figs.

Fig. 5. F̂ contains all system structural system-patient
information and acts as an ingredient of the feed-
forward action.

9a, 9b, 9c under the influence of disturbances like those
shown in Fig. 3.

4.2 MIMO Example

The second example involves the 3-inputs and 3-outputs,
where a fixed time delay equal to 10s is considered in
the Poropofol-BIS interaction, over the 24 patients, during
both induction and maintenance phases. The 3 ULM-iP
controllers have been tuned using trial and error proce-
dures and they regulate the BIS, RASS, and NMB by
manipulating Propofol, Remifentanil, and Atracurium in-
fusions. The performances of the 3 ULM-iP controllers
are shown in Figs. 10a, 10b, 10c under the influence of
disturbances like those shown in Fig. 3.

5. CONCLUSIONS

The paper employs the ultra-local model control approach
for the automatic regulation of anesthesia. The method is
quite straightforward and it ensures good performance in
simulation both in the induction and maintenance phases,
dealing with nonlinearities, noise effects, the time-varying
BIS delay, intra- and inter-patient parameters variations,
and unknown disturbances. Moreover, it exhibits inter-
esting plug-and-play characteristics. Future developments
will include an in-depth analysis of stability and tuning
procedures for the proposed control approach.
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