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Rogério Y. Takimoto ∗,4 Thiago C. Martins ∗,5

Marcos S. G. Tsuzuki ∗,6

∗ Laboratory of Computational Geometry
Mechatronics and Mechanical Systems Engineering Department,
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Abstract: Electrical Impedance Tomography (EIT) is a noninvasive, indirect image recon-
struction technique which consists in the inference of the distribution of electrical conductivity
inside a body or object from the set of electrical potentials measured on its boundary. Several
methods have been used for the reconstruction of EIT images, such as Simulated Annealing,
Kalman Filter, D-bar, and, more recently, Convolutional Neural Networks (CNN). An issue
when using CNN is that the resulting image of the convolution process is smaller than the
original input image. Besides that, the values lying on the borders of the input image are used
less, hence their importance is overlooked. This problem is usually addressed by the introduction
of padding, which is the addition of layers in the borders of the original input image. This work
proposes the use of a doubly periodic padding, which is relevant for toroidal image problems
such as the electric potential distribution measured using EIT. The CNN is trained using a
database generated by numerical simulations. The resulting image reconstructions are presented
for different noisy potential inputs. Copyright ©2021 IFAC.

Keywords: Electrical impedance tomography, Convolution neural networks, Periodic padding.

1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a noninvasive,
indirect method of image reconstruction. The technique
consists in the inference of the distribution of electrical
conductivity inside a body or object, which is done from
the set of electrical potential values measured on its
boundary.

EIT presents some advantages over other noninvasive
methods, such as the fact that it does not depend on
the emission of radiation and that the equipment used
can be small and portable, with a relatively low cost. For
these reasons, EIT has been used in several applications,
including the real-time monitoring of industrial processes
and biomedical analysis (Martins et al., 2011; Silva et al.,
2017).

Among the applications of the EIT, those in the medi-
cal field stand out. EIT can be used for the continuous
observation of pulmonary function to instantly assess the
effects of therapeutic maneuvers on the regional distribu-
tion of ventilation (Teschner et al., 2015), as well as for
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the diagnosis of pulmonary embolism, detection of tumors
in the chest area and diagnosis and distinction of ischemic
and hemorrhagic stroke (Lymperopoulos et al., 2017).

The EIT equipment responsible for data acquisition is
an electrode belt. Once the belt is positioned around the
body or object studied, a low amplitude current pattern is
applied through a pair of electrodes, and then the electrical
potentials resulting from such application are measured
along the contour of the domain. Then, the current pattern
is changed, that is, the current is applied through another
pair of electrodes and the potentials are measured again,
and so on, to obtain a large amount of electrical potential
data for a given conductivity distribution.

The aforementioned procedure in presented in Fig. 1. A
current pattern Ji, i ∈ [1, 32] is applied to a domain
with conductivity distribution σ(x, y). For each current
injection, the electrical potential Φi

j , j ∈ [1, 32] is measured
relative to ground. In a 32-electrode configuration, it is
possible to obtain up to 1024 potential values.

EIT can be used to reconstruct either differential or ab-
solute images. The reconstruction of absolute images is
substantially more difficult, and, until recently, clinically
impracticable (Martins and Tsuzuki, 2012). The quality
of reconstruction of absolute images is limited by the
difficulty of solving the inverse problem, whereas neither
the exact geometry of the object’s contour nor the exact
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Fig. 1. For a given current pattern Ji, the set of electrical
potential Φi

j , j ∈ [1, 32] is measured relative to
ground. This figure presents the scheme for injection
of current patterns J1 and J17, each one skipping three
electrodes.

arrangement of the electrodes on the surface are known.
These limitations, together with low spatial resolution,
make it difficult to implement EIT in clinical practice.
However, the development of fast and robust reconstruc-
tion methods, as well as efficient data acquisition equip-
ment, promoted the advancement and diffusion of the
technique.

Several methods have been used for the reconstruction of
EIT images, for instance, simulated annealing (Martins
and Tsuzuki, 2011, 2013, 2015; Tavares et al., 2012, 2014,
2015; Martins et al., 2014; Sato et al., 2018), Kalman
filter (Trigo et al., 2004) and D-Bar (Alsaker and Mueller,
2018). Recently, artificial neural network methods have
also been used for solving and improving EIT reconstruc-
tions. Tan et al. (2018) and Bianchessi et al. (2020) used
the LeNet Convolutional Neural Network (CNN) (Lecun
et al., 1998) to solve the EIT inverse problem, while Hamil-
ton and Hauptmann (2018) used a convolutional neural
network for postprocessing direct reconstructions obtained
with the D-bar method.

The main step of data processing in a convolutional neural
network is the convolution itself. For a given n× n pixels
input image, the output image resulting from a convolution
using a filter of size s×s will be (n−s+1)×(n−s+1), that
is, the resulting image size is smaller than the original one.
Besides that, the values lying on the borders of the input
image are used less, hence their importance is diminished.
This problem is usually addressed by the introduction of
padding, which is the addition of layers on the borders of
the original input image. This work proposes the use of
a doubly periodic padding, which is relevant in toroidal-
like input image problems such as the electric potential
distribution measured using EIT.

This paper is structured in the following way: Section 2
presents the convolutional neural network topology and
the proposed modification of padding for toroidal map-
ping. In Section 3, the methodology used to generate
training data for the artificial neural network is discussed.

The reconstruction of a test set is displayed in Section 4
and, finally, the conclusion is presented in Section 5.

2. MODELLING THE EIT INVERSE PROBLEM
USING A CONVOLUTIONAL NEURAL NETWORK

Solving the inverse problem of EIT with artificial neural
networks (ANN) means training a model which takes
as input the set of electrical potentials measured on
the boundary of the body and outputs an associated
conductivity map.

A CNN, a special kind of ANN, consists of convolution,
activation, and pooling. In the convolution step, filters
move across the images to recognize patterns in the input
data. This is done by multiplying the kernel F, indexed
from -N to N, by the overlapping input image area,

F ∗ I(x, y) =

N∑
j=−N

N∑
i=−N

F (i, j)I(x− i, y − j) (1)

The resultant sum value is then assigned to the current
pixel of the resulting convoluted image. After the convolu-
tion, an activation function is applied to each value of the
resulting image.

Given the fact that the size of the filter side is always
greater than one, the resulting image shrinks every time
a convolution operation is performed. To bypass this
problem, padding is usually applied, which adds layers to
the borders of the original input image, so that the output
remains of the same size. A typical padding is the zero (or
“same”) padding, which adds zeros to the borders. (Fig. 2).
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Fig. 2. Zero padding layers added to the original image.

In this work, the potential vector of 1024 measurements is
reshaped into a matrix of shape 32 × 32, where the rows
corresponds to each current pattern and the columns to
each electrode measurement. Then, the input data can be
thought as an image. Besides that, the closed electrode
belt suggests that there is a strong correlation between the
first and the last columns of this matrix. Moreover, the first
and last rows are correlated, as they represent neighboring
current patterns injected in the domain. Therefore, the
input can be seen as a toroidal-like image. This paper
proposes the use of a doubly periodic padding for such
a problem, as represented in Fig. 3.

After the activation, there is a pooling step, where a
filter is applied to nonoverlapping subregions of the initial
representation, replacing its value with a single value
encountered inside the filter region. This is done to prevent
overfitting the training data. When the replacing value is
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Fig. 3. Doubly periodic padding layers added to the
original image.

the maximum value within the filter region, the method is
called MaxPooling.

The LeNet-5 network architecture was used in this work.
Some modifications were made to adapt it to the re-
gression problem covered herein, such as the adequacy
of the number of neurons in the output layer. Another
change concerns the use of a non-saturating activation
function (Krizhevsky et al., 2012).

The topology of the CNN consists of:

(1) input layer, which contains data from 32 electrodes
in 32 current applications;

(2) convolution layer with 30 filters of size 5×5, activation
function ReLU, strides of 2 × 2 and doubly periodic
padding ;

(3) maxPooling layer with filters of size 2 × 2, stride of
2× 2 and zero padding ;

(4) second convolution layer, similar to the first, but with
240 filters;

(5) output layer with activation function ReLU, which
has the number of neurons equal to the number of
nodes in the reconstruction mesh.

The output dimension of each layer is shown in Fig. 4.

1 × 32 × 32

input

30 × 16 × 16

convolution

30 × 8 × 8

pooling

240 × 4 × 4

convolution

3840

flatten

2505

output

Fig. 4. The output dimension of each CNN layer.

3. ON THE GENERATION OF SYNTHETIC
TRAINING DATA

Experimental EIT data is not widely available. Therefore,
the generation of synthetic databases from numerical sim-
ulations is usually performed for obtaining large training
sets.

From conductivity distributions generated synthetically, it
is possible to estimate the electrical potentials resulting
from the application of a current pattern using the forward
formulation of the problem. Then, this data can be used
to train the CNN. The framework for the generation of
synthetic data was previously presented by the Authors
(Duran et al., 2021).

The simulated data was generated in the following way:

(1) generation of a 2D mesh of radius 0.15m to represent
the expected domain of the experiment;

(2) definition of a feasible random layout based on the
geometry of the phantoms;

(3) definition of the conductivity distribution in the mesh
nodes, given the layout of the phantoms and the
conductivity of of each entity;

(4) solution of the forward problem using the Finite
Element Method (FEM).

The EIT forward problem and the FEM are described in
the following subsections.

3.1 The EIT forward problem

The frequencies of the currents applied in EIT are low
enough so that the capacitive and inductive effects can
be ignored. Under this hypothesis, the two-dimensional
problem of EIT consists in solving the Laplace equation

∇ · (σ(x, y)∇Φ(x, y)) = 0 (x, y) ∈ Ω (2)

where, σ(x, y) and Φ are the conductivity and potential
distributions, respectively, and Ω is the problem domain.
The null result means that there are no current sources
within the domain, what is expected in EIT (Martins
and Tsuzuki, 2015; Martins et al., 2014). The forward
problem of the EIT is defined as the determination of the
distribution of electric potentials Φ over Ω.

Neumann boundary conditions are applied to the bound-
ary

σ
∂Φ

∂n̂
= J (3)

where n̂ is the unit normal vector.

The analytical solutions for 3 and 2 for arbitrary domains
are not available. An approximate solution can be obtained
using the FEM.

3.2 Finite element formulation of the forward problem

FEM is a popular technique for modeling EIT forward
problems. Using FEM, it is possible to approximate the
equations of the problem to enable the solution for each



Fig. 5. An example of a mesh.

element of the mesh (see Fig 5). The accuracy of the
method is controlled by the size of the element.

A triangular element was chosen for the FEM model, and
a linear polynomial interpolation is adopted to determine
the potential throughout the element. In this way, the ele-
ment’s conductance matrix, calculated using the notation
shown in Fig. 6, can be described as

x

y

i
(xi,yi)

j
(xj ,yj)

k
(xk,yk)

Ωe

Fig. 6. Triangular element with nodes i, j and k.

[K]e =σe[BC]Te [BC]e

∫
Se

dxdy

=
σe
4S

[
bi ci
bj cj
bk ck

] [
bi bj bk
ci cj ck

]

=
σe
4S

 b2i + c2i bibj + cicj bibk + cick
bjbi + cjci b2j + c2j bjbk + cjck
bkbi + cick bkbj + ckcj b2k + c2k

 ,
(4)

where,

ai = xjyk − xkyj aj = xkyi − xiyk ak = xiyj − xiyj
bi = yj − yk bj = yk − yi bk = yi − yj
ci = xk − xj cj = xi − xk ck = xj − xi.

(5)

The local matrix of element [K]e must be computed for
all elements of the mesh. Then, it should be assembled,
generating a global conductance matrix K. The solution
of the EIT forward problem using FEM is reduced to the
solution of a linear system of equations

K · φ = J (6)

where, J is the vector of currents and φ is the vector of
potentials to be calculated.

4. RESULTS

The experiment was carried out with a layout containing
the following phantoms:

• a circle of radius 0.03m and conductivity 0.005 (Ω ·
m)−1;

• an equilateral triangle of side 0.06m and conductivity
0.005 (Ω ·m)−1;

• a square of side 0.06m and conductivity 0.005 (Ω ·
m)−1.

The conductivity of the medium was set to 0.3815(Ω ·
m)−1, and current amplitude equals to 1.9mA. In all,
30,000 training data were generated with the simulated
experiments described above.

The hyperparameters used in the training were:

(1) batch size of 100 samples;
(2) number of epochs equals to 50;
(3) a validation dataset of 20% of training data;
(4) early stopping activated;
(5) Adam optimizer; and
(6) mean squared error loss function.

An additional set of 4 test conductivities was created for
the visual evaluation of the reconstruction. For the test
reconstruction, an electrical noise with normal distribution
was added to the potential vector,

χ ∼ N (0, σ2), σ = ξ · max
1≤i≤32

φi (7)

where ξ is a percentage applied to the maximum potential
computed on each conductivity distribution. Three differ-
ent percentages were applied to the test conductivities: 0,
1, and 2%.

Fig. 7, shows the reconstruction for each different noisy
data, for the first two test layouts. It can be observed that
when there is no electrical noise added to the potential
vector (row number two, ξ = 0), reconstruction presents
high contrast, especially for those phantoms positioned
closer to the boundary and further apart from each other.
As soon as the electrical noise raises from 1 to 2% (rows
3 and 4, respectively), the quality of CNN reconstructions
worsen dramatically.

Likewise, Fig. 8 shows the reconstruction for the last
two test layouts. These reconstructions show the same
behavior of Fig. 7.

The mean quadratic errors in the test set were

• 3.1 · 10−3, for ξ = 0%;
• 9.8 · 10−3, for ξ = 1%;
• 18.1 · 10−3, for ξ = 2%.

5. CONCLUSION AND FUTURE WORK

In this work, a CNN-based solution to the 2D problem
of Electrical Impedance Tomography was proposed using
doubly periodic padding. The test set data proved good
quality reconstruction for low noisy potential data (note
that the proposed CNN was trained with noiseless data).

In the finite element model adopted here, only the real part
of the electrical impedance was considered. The capacitive



(a) Test conductivity no. 1 (b) Test conductivity no. 2

(c) ξ = 0% (d) ξ = 0%

(e) ξ = 1% (f) ξ = 1%

(g) ξ = 2% (h) ξ = 2%

0.0 1.06

Fig. 7. Comparison between the real conductivity distri-
bution of first two test samples (top row) and the
conductivity distribution obtained by CNN for noisy
data with 0, 1 and 2% error (second, third and last
rows, respectively.)

effects are usually small and can be neglected. However,
for a better quality reconstruction, the capacitive effect
must be considered (Martins and Tsuzuki, 2017).

Future research may include incorrect electrode placement
and irregular contour geometry.

(a) Test conductivity no. 3 (b) Test conductivity no. 4

(c) ξ = 0% (d) ξ = 0%

(e) ξ = 1% (f) ξ = 1%

(g) ξ = 2% (h) ξ = 2%

0.0 1.06

Fig. 8. Comparison between the real conductivity distri-
bution of last two test samples (top row) and the
conductivity distribution obtained by CNN for noisy
data with 0, 1 and 2% error (second, third and last
rows, respectively.)

ACKNOWLEDGEMENTS

A. K. Sato is supported by FUSP/Petrobras. G. C. Duran
and M. S. G. Tsuzuki are supported by CNPq (Grants
140.299/2020–3 and 311195/2019–9). The paper has the
support from CAPES/PROAP - Grant 817.757/38.860.



REFERENCES

Alsaker, M. and Mueller, J.L. (2018). Use of an optimized
spatial prior in D-bar reconstructions of EIT tank data.
Inverse Probl Imag, 12(4), 883–901.

Bianchessi, A., Akamine, R.H., Duran, G.C., Tanabi, N.,
Sato, A.K., Martins, T.C., and Tsuzuki, M.S.G. (2020).
Electrical impedance tomography image reconstruction
based on neural networks. IFAC-PapersOnLine, 53(2),
15946–15951.

Duran, G.C., Sato, A.K., Tanabi, N., Nasiri, H., Takimoto,
R.Y., Barari, A., Martins, T.C., and Tsuzuki, M.S.G.
(2021). Framework for electrical impedance tomography
forward problem with non-uniform electrodes distribu-
tion. In L.Y. Cheng (ed.), ICGG 2020 - Proceedings
of the 19th International Conference on Geometry and
Graphics, 320–331. Springer International Publishing,
Cham.

Geuzaine, C. and Remacle, J.F. (2009). Gmsh: A 3-D finite
element mesh generator with built-in pre- and post-
processing facilities. Int J Numer Meth Eng, 79(11),
1309–1331.

Hamilton, S.J. and Hauptmann, A. (2018). Deep d-
bar: Real-time electrical impedance tomography imag-
ing with deep neural networks. IEEE Transactions on
Medical Imaging, 37(10), 2367–2377.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012).
Imagenet classification with deep convolutional neural
networks. Neu Inf Pro Syst, 25.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proc IEEE, 86(11), 2278–2324.

Lymperopoulos, G., Lymperopoulos, P., Alikari, V., Dafo-
gianni, C., Zyga, S., and Margari, N. (2017). Appli-
cations for electrical impedance tomography (eit) and
electrical properties of the human body. In P. Vlamos
(ed.), GeNeDis 2016, 109–117. Springer International
Publishing, Cham.

Martins, T.C., Camargo, E.D.L.B., Lima, R.G., Am-
ato, M.B.P., and Tsuzuki, M.S.G. (2011). Electrical
impedance tomography reconstruction through simu-
lated annealing with incomplete evaluation of the objec-
tive function. In 33rd IEEE EBMS, 7033–7036. Boston,
USA.

Martins, T.C. and Tsuzuki, M.S.G. (2011). Simulated
annealing with partial evaluation of objective function
applied to electrical impedance tomography. IFAC
Proceedings Volumes, 44(1), 4989–4994.

Martins, T.C. and Tsuzuki, M.S.G. (2012). Electrical
impedance tomography reconstruction through simu-
lated annealing with total least square error as objective
function. In 34th IEEE EMBC, 1518–1521. San Diego,
USA.

Martins, T.C. and Tsuzuki, M.S.G. (2013). Electrical
impedance tomography reconstruction through simu-
lated annealing with multi-stage partially evaluated ob-
jective functions. In 35th IEEE EMBC, 6425–6428.
Osaka, Japan.

Martins, T.C. and Tsuzuki, M.S.G. (2015). EIT image
regularization by a new multi-objective simulated an-
nealing algorithm. In Proc 37th IEEE EMBC, 4069–
4072. Milan, Italy.

Martins, T.C., Fernandes, A.V., and Tsuzuki, M.S.G.
(2014). Image reconstruction by electrical impedance

tomography using multi-objective simulated annealing.
In IEEE 11th ISBI, 185–188. Beijing, China.

Martins, T.C. and Tsuzuki, M.S.G. (2017). Investigating
Anisotropic EIT with Simulated Annealing. IFAC-
PapersOnLine, 50(1), 9961–9966.

Sato, A.K., Bianchessi, A., Martins, T.C., Lima, R.G., and
Tsuzuki, M.S.G. (2018). A new 2D dual layered elec-
trode model for the electrical impedance tomography.
IFAC-PapersOnLine, 51, 41–46.

Silva, O.L., Lima, R.G., Martins, T.C., Moura, F.S.,
Tavares, R.S., and Tsuzuki, M.S.G. (2017). Influence
of current injection pattern and electric potential mea-
surement strategies in electrical impedance tomography.
Control Eng Pract, 58, 276–286.

Tan, C., Lv, S., Dong, F., and Takei, M. (2018). Image
reconstruction based on convolutional neural network
for electrical resistance tomography. IEEE Sensors
Journal, 19(1), 196–204.

Tavares, R.S., Martins, T.C., and Tsuzuki, M.S.G.
(2012). Electrical impedance tomography reconstruc-
tion through simulated annealing using a new outside-in
heuristic and GPU parallelization. Journal of Physics:
Conference Series, 407, 012015.

Tavares, R.S., Nakadaira-Filho, F.A., Tsuzuki, M.S.G.,
Martins, T.C., and Lima, R.G. (2014). Discretization er-
ror and the EIT forward problem. IFAC-PapersOnLine,
47(3), 7535–7540.

Tavares, R.S., Tsuzuki, M.S.G., Martins, T.C., and Lima,
R.G. (2015). The EIT forward problem parallelized us-
ing a colored pJDS matrix format. IFAC-PapersOnLine,
48(20), 42–47.

Teschner, E., Imhoff, M., and Leonhardt, S. (2015). Elec-
trical Impedance Tomography: The realisation of re-
gional ventilation Monitoring, 2nd edition.

Trigo, F., Gonzalez Lima, R., and Amato, M. (2004).
Electrical impedance tomography using the extended
kalman filter. IEEE Transactions on Biomedical En-
gineering, 51(1), 72–81.


