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Abstract: Inside living cells, proteins or mRNA can show oscillations even without a periodic
driving force. Such genetic oscillations are precise timekeepers for cell-cycle regulations, pattern
formation during embryonic development in higher animals, and daily cycle maintenance in most
organisms. The synchronization between oscillations in adjacent cells happens via intercellular
coupling, which is essential for periodic segmentation formation in vertebrates and other
biological processes. While molecular mechanisms of generating sustained oscillations are quite
well understood, how do simple intercellular coupling produces robust synchronizations are
still poorly understood? To address this question, we investigate two models of coupled gene
oscillators - activator-based coupled oscillators (ACO) and repressor-based coupled oscillators
(RCO) models. In our study, a single autonomous oscillator (that operates in a single cell) is
based on a negative feedback, which is delayed by intracellular dynamics of an intermediate
species. For the ACO model (RCO), the repressor protein of one cell activates (represses)
the production of another protein in the neighbouring cell after a intercellular time delay. We
investigate the coupled models in the presence of intrinsic noise due to the inherent stochasticity
of the biochemical reactions. We analyze the collective oscillations from stochastic trajectories
in the presence and absence of explicit coupling delay and make careful comparison between
two models. Our results show no clear synchronizations in the ACO model when the coupling
time delay is zero. However, a non-zero coupling delay can lead to anti-phase synchronizations in
ACO. Interestingly, the RCO model shows robust in-phase synchronizations in the presence and
absence of the coupling time delay. Our results suggest that the naturally occurring intercellular
couplings might be based on repression rather than activation where in-phase synchronization
is crucial.

Keywords: Biological oscillations, Coupled oscillators, Interlocked feedback, Stochastic
simulation, Noisy gene oscillations

1. INTRODUCTION

The phenomena of oscillations are widely found in living
systems. At the cellular level, the gene products such
as mRNA/proteins can show sustained oscillations even
without any periodic driving force Goldbeter and Berridge
(1996); Novák and Tyson (2008); Forger (2017). Such
gene oscillations are found in various contexts and across
organisms. The popular examples of genetic oscillators are
the circadian clock Stokkan et al. (2001); Ray et al. (2020),
cell-cycle clock Hara et al. (1980); Pomerening et al.
(2003), and segmentation clock Palmeirim et al. (1997);
Zinani et al. (2021). The circadian clocks are responsible
for maintaining diurnal cycle in most organisms, cell-cycle
clocks regulate precise time in cell division, and segmen-
tation clocks dictate accurate rhythmic somite formation
during embryonic development in vertebrates.

For the generation of sustained gene oscillations, there
are nonlinear regulatory circuits Novák and Tyson (2008).

Depending on contexts, the complexity of such a circuit
may vary. However, the basic regulatory motif for many
gene oscillators, including the circadian clock, cell-cycle
clock, and segmentation clock, is time-delayed negative
feedback. The time-delays can arise due to the dynamics
of intermediates before the final repression of the clock
genes. In eukaryotes, the most contribution of the time-
delay comes from the mRNA exportation from the cell nu-
cleus to cytoplasm, importation of cytoplasmic protein to
the cell nucleus where transcriptional repression happens,
and post-transcriptional modification dynamics. Theoret-
ical models incorporate such delays using explicitly Lewis
(2003) or incorporating the dynamics of several interme-
diates Griffith (1968); Morelli and Jülicher (2007). Such
gene regulatory circuits are subject to unavoidable fluctua-
tions due to the inherent stochasticity of biochemical reac-
tions occurring in low molecular abundance Elowitz et al.
(2002); Shaffer et al. (2017). Amid such noise, cells produce
gene oscillations that are usually remarkably precise Geva-
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Fig. 1. The schematic of single gene oscillator. (A) A nega-
tive feedback loop with three components; where X→
Y means ‘X activates Y’ and XaY means ‘X inhibits
Y’ (B) Trajectories of the deterministic and stochastic
simulation of the production of proteins X with n =
2. Other parameters: kx=ky=kz=10, γx=γy=γz=8,
Kx=Ky=Kz=30, Kmx=Kmy=Kmz=30.

Zatorsky et al. (2006); Webb et al. (2016); Keskin et al.
(2018). Researchers also successfully engineered synthetic
circuits based on delayed repression to generate robust
and persistent oscillations in bacteria Elowitz and Leibler
(2000); Potvin-Trottier et al. (2016) and mammal cells
Tigges et al. (2009).

Although individual cells can act as autonomous oscilla-
tors, they must oscillate collectively for proper functions of
many biological processes. For example, in the case of seg-
mentation clocks, adjacent cells oscillate in synchrony to
produce accurate vertebra formation Lewis (2003); Venzin
and Oates (2020). To create such collective oscillations, in-
tercellular coupling between neighbouring cells is essential.
Such coupling often involves complex signaling pathways,
and its role in synchronization is not well understood
Venzin and Oates (2020). Effectively, via intercellular cou-
pling, dynamical changes in molecular concentration of
relevant proteins in a cell affect the production of the
clock genes in the neighbouring cells. The process of a cell
responding to the signal from the neighbours could involve
significant amount of time. In essence, the intercellular
coupling can activate or repress the production from clock
genes in neighbouring cells with some time delay. In this
paper, we aim to understand its role by studying two sim-
ple models – activator-based coupled oscillators (ACO),
and repressor-based coupled oscillators (RCO) models in
the presence of coupling delay. The single autonomous
oscillator in this study is based on delayed inhibition,
where the dynamics of an intermediate species causes the
intracellular time delay.

2. MODEL FORMULATION

2.1 Dynamics of single oscillator

The single autonomous gene oscillator consists of three
proteins X, Y, and Z (see Fig.1A). The protein X activates
Y, and Y activates the expression of Z protein. Finally,
protein Z represses the X productions and closes the
negative feedback loop. The dynamics of Y and Z causes an
effective time delay for the repression. The deterministic
dynamics of the concentration of species (denoted as
corresponding lower case letters x, y, and z) are given by:

dx

dt
= kxfr(z(t))− γxfd(x(t)), (1a)

dy

dt
= kyfa(x(t))− γyfd(y(t)), (1b)

dz

dt
= kzfa(y(t))− γzfd(z(t)). (1c)

The parameter kx, ky, and kz are the maximum synthesis
rates for the protein X, Y and Z, respectively. The maxi-
mum degradation rates are denoted by symbols γx, γy, and
γz. The functions fr and fa are the nonlinear Hill-type
functions for the repression and activation Alon (2011);
Wilhelmová (1996). These functions are given by

fa(s) =
1

1 + (Ks

s )n
for s = x and y, (2a)

fr(z) =
1

1 + ( z
Kz

)n
, (2b)

where n is the Hill coefficient for the activation and re-
pression, and Kx, Ky and Kz the dissociation constant,
representing the values of respective protein concentra-
tions where repression and activation become half of its
maximum value. We consider the Michaelis-Menten type
degradation, assuming that substrate concentrations are
in excess and association equilibria quickly attained. The
degradation function fd for a species S is given by

fd(s) =
s

Kms + s
for s = x, y, and z, (3)

where the parameter Kms dissociation constant corre-
sponding to Michaelis-Menten degradation.

In circadian clocks, protein degradation is controlled by
phosphorylation, ubiquitination, and proteasomal degra-
dation and thus it is reasonable to assume Michaelis–Menten
kinetics Goldbeter (2013); Gonze et al. (2005); Griffith
(1968); Purcell et al. (2010); Novák and Tyson (2008).
We note that in the limit of linear activation and linear
degradation, the model reduced to the well-known Good-
win oscillator, where the repression term is the only source
of nonlinearity Goodwin (1965); Griffith (1968). For the
latter case, to get sustained oscillations, the Hill coefficient
for the repression must be greater than 8 Griffith (1968).
As the Goodwin oscillator assumes a minimal regulatory
mechanism for generating sustained oscillations, it is ben-
eficial for mathematical insights Griffith (1968); Dey and
Singh (2020). However, such a high Hill coefficient value is
often considered biologically unrealistic Gonze and Abou-
Jaoudé (2013). With other nonlinearities coming from ac-
tivation and Michaelis-Menten, in our model, one can get
sustained oscillations even with the Hill coefficient n = 2.
Here, the typical trajectories of species X for n = 2 is
shown in Fig. 1B.

Table 1. Definition of the kinetic parameters

Kinetic parameter Description

kx, ky , kz synthesis rate const.
γx, γy , γz protease (enzyme) rate const.
Kx,Ky ,Kz dissociation const.for activation/repression

Kmx,Kmy ,Kmz dissociation const. for Michaelis-Menten
Kca,Kcr coupling dissociation const.

n Hill coefficient
τ coupling time-delay
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Fig. 2. The Schematic diagrams of the models of coupled
oscillators. A single oscillator operates in a single
cell. Both cells are identical and the coupling acts
symmetrically between them. (A) The ACO model:
the protein Z in one cell activates the production of
protein X in the other cell. (B) The ACO model:
the protein Z in one cell represses the production of
protein X in the other cell.

2.2 Dynamics of coupled oscillators

The oscillator in each cells are coupled to its adjacent
cell via signaling pathway. Such coupling are essential
for synchronization between oscillations in neighboring
cells. The signaling pathways often complex that involves
several molecular species undergoing many biochemical
reactions. Such complexity makes theoretical studies of
synchronizations challenging Venzin and Oates (2020).

Here we study two different models of two coupled oscil-
lators with opposite coupling mechanisms, schematically
shown in Fig. 2. In our models, we do not have additional
signaling species for intercellular coupling. The protein Z
itself acts as a signaling molecule and affects the produc-
tion of protein X in the other cell with some time delay
τ . We consider two coupling mechanisms: activator-based
coupled oscillators (ACO) and repressor-based coupled
oscillators (RCO). More specifically, in ACO, Z in a cell
activates the production of X in the other cell. Whereas
in RCO, Z represses the production of X in the other cell.
In our study, we assume both oscillators are identical and
the coupling acts symmetrically between two oscillators.
The coupling directly affects the production of X, whose
deterministic dynamics for a cell i = {1, 2} is given by

dxi
dt

=kxfac(zi(t), zj(t−τ))−γxfd(xi(t)) : for ACO , (4a)

dxi
dt

=kxfrc(zi(t), zj(t−τ))−γxfd(xi(t)) : for RCO, (4b)

where j is the neighbour of i. The coupling functions for
ACO fac and for RCO frc are

fac(zi(t), zj(t− τ)) = fr(zi(t))fa(zj(t− τ))

=
1

1 + ( zi(t)Kz
)n

1

1 + ( Kca
zj(t−τ) )

n
, (5a)

frc(zi(t), zj(t− τ)) = fr(zi(t))fr(zj(t− τ))

=
1

1 + ( zi(t)Kz
)n

1

1 + (
zj(t−τ)
Kcr

)n
, (5b)

where Kca and Kcr are the corresponding coupling disso-
ciation constants. We note that for ACO, in the limit of
Kca → 0, both oscillators become uncoupled, whereas for
RCO the uncoupled limit is Kcr → ∞. The dynamics of
Y and Z proteins are not directly affected by the coupling
and are given by

dyi
dt

= kyfa(xi(t))−γyfd(yi(t)), (6a)

dzi
dt

= kzfa(yi(t))−γzfd(zi(t)). (6b)

The gene expression is noisy as the biochemical reactions
are inherently stochastic, and such noise becomes crucial
when the molecular species inside cells present in low abun-
dances. Thus, we study the above coupled systems in the
presence of such intrinsic noise. As our coupling explicitly
depends on the time-delay, we can not use the traditional
stochastic simulations algorithm Gillespie (1977). Here, we
employ the time-delay stochastic simulation algorithm as
proposed in Barrio et al. (2006).

3. RESULTS

3.1 Collective oscillations without intercellular time delay

First, we study collective oscillations in the absence of
intercellular coupling time delay (τ = 0) by varying
the coupling dissociation constant which is a measure
of coupling strength. Then, we study the effect of the
coupling time delay. As the ACO and RCO models work
very differently, comparing their the collective oscillations
in these two models can be tricky. We do the following
mathematical comparison between the ACO and RCO.

Mathematical comparison between ACO and RCO: We
keep parameters for the single oscillators in both the
ACO and RCO models the same. For comparison, we
conserve the amplitude or period of the oscillations for
both these models and then study the synchronization.
To conserve the amplitude or period, we only vary the
coupling dissociation constant. This is very much in the
spirit of the mathematically controlled comparison Hasan
and Kurata (2017); Hasan et al. (2019); Hasan and Kurata
(2016); Alves and Savageau (2000).

Table 2. Parameters for the ACO and RCO
models to conserve the expression levels.

Each network ACO RCO

kx=ky=kz=10 kx=ky=kz=10
Corresponding γx=γy=γz=8 γx=γy=γz=8
parameters Kx=Ky=30 Kx=Ky=30

Kz=30 Kz=30
Kmx=Kmy=30 Kmx=Kmy=30

Kmz=30 Kmz=30
Kca=1.1 Kcr=30
n=3 n=3
τ=0 τ =0
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Fig. 3. Stochastic simulation results for the ACO and RCO
models at conserved expression levels. Trajectories
of concentration of protein X for cells 1 and 2 for
the ACO and RCO models are plotted in (A) and
(B), respectively. (C) and (D) are the scatter plots
of X1 and X2 corresponding to (A) and (B). For the
RCO, the trajectories of both cells follow each other,
suggesting a strong in-phase synchronization. For the
ACO, the trajectories of both cells seem random,
suggesting no clear phase synchronization.

A. Coupled oscillators with conserved expression levels.
To conserve the expression levels of protein X in the ACO
and RCO models, we use the parameter set presented in
Table. 2. We only vary the value of the coupling dissoci-
ation constants, while the values of the other kinetic pa-
rameters within each model and between the competitive
models are the same. The results are presented in Fig. 3.
The RCO model shows robust in-phase synchronization.
Whereas, the ACO model does not show any clear phase
synchronizations – cell-1 and cell-2 seem to oscillate ran-
domly.

Table 3. Parameters for the ACO and RCO
models to conserve the expression period.

Each network ACO RCO

kx=ky=kz=10 kx=ky=kz=10
Corresponding γx=γy=γz=8 γx=γy=γz=8
parameters Kx=Ky=13.55 Kx=Ky=13.55

Kz=13.55 Kz=13.55
Kmx=Kmy=13.55 Kmx=Kmy=13.55

Kmz=13.55 Kmz=13.55
Kca=1.1 Kcr=30
n=3 n=3
τ=0 τ =0

B. Coupled oscillators with conserved period. Is the
collective oscillation observed in the conserved expression
comparison also holds across other parameters? Here, we
make another comparison by keeping the period of the
oscillations in both the model the same. The parameters
for this case are presented in Table. 3. We only vary the
value of the coupling dissociation constants, while the val-
ues of the other kinetic parameters within each model and
between the competitive models are the same. The results
are presented in Fig. 4. As in the conserved expression
comparison case, we find robust in-phase synchronization
for the RCO, while the ACO model shows no clear phase
synchronizations.

We also run several stochastic simulations by perturbing
parameters presented in Table 2 and Table 3. We find
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Fig. 4. Stochastic simulation results for the ACO and
RCO models at conserved period. Trajectories of
concentration of protein X for cells 1 and 2 for the
ACO and RCO models are plotted in (A) and (B),
respectively. (C) and (D) are the scatter plots of
X1 and X2 corresponding to (A) and (B). For the
RCO, the trajectories of protein X for both cells show
strong in-phase synchronization. For the ACO, the
trajectories of both cells seem random.

the robust in-phase synchronization for the RCO across
parameters. Again, no clear phase synchronization is ob-
served in the ACO model.

3.2 Effect of intercellular time delay

Now, we turn our focus on the effect of the intercellular
coupling time delay. Time delay can have an interesting
effects on the coupled oscillations Kim et al. (2010); Joshi
et al. (2020); Rashid and Kurata (2020); Amdaoud et al.
(2007). It also plays a critical role in synchronization
between the coupled feedback oscillators Smolen et al.
(2001). For example, it can lead to alternative in-phase
synchronization and anti-phase as the delay time is varied
Jörg et al. (2018); Giordano et al. (2019); Dey et al.
(2020). Here, we quantify the collective oscillation by the
Pearson correlation coefficient in the presence and absence
of coupling delay time τ . If X1(t) and X2(t) are the
stochastic variables representing the concentration protein
X in cell 1 and 2 at time t, respectively, then the Pearson
correlation, R between them is given by,

R =
〈X1X2〉 − 〈X1〉〈X2〉√

(〈X2
1 〉 − 〈X1〉2)(〈X2

2 〉 − 〈X2〉2)
, (7)

where the angular bracket 〈·〉 denotes the average over
time and ensembles. The value of correlation R is 1 if
protein X in both cells oscillate in perfect in-phase, −1
if both cells oscillate in perfect anti-phase, 0 if both cells
oscillate randomly. We measure the correlation coefficient
R, for coupling delay τ = 0 and τ = 12. The period of the
oscillations is 24 when τ = 0. For a given τ , we compute R
for different values of coupling dissociation constant Kca
or Kcr. Each R value is computed averaging over hundreds
of long trajectories with time window 8000.

In Fig. 5(A), we plot R as a function of Kca and Kcr for
the ACO and RCO model. For τ = 0, R remains close to
zero throughout for the ACO, whereas R becomes close
to 1 for large values of Kcr, showing in-phase synchro-
nizations in the RCO and no synchronization the in ACO
model. This consistent with the observation discussed in
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Fig. 5. Effect of coupling time-delay. (A) The correlation
R is plotted for τ = 0 and τ = 12 as a functions
the coupling dissociation constant. For the RCO,
R approaches to 0.8 irrespective of the value of τ ,
showing strong in-phase synchronizations. While for
the ACO, the synchronization behavior depends on
the value of τ . When τ = 0, two cells oscillates
randomly results R ≈ 0. For τ = 0, R ≈ −0.8 for
large Kca, suggesting an anti-phase synchronization.
(B) and (C) The stochastic trajectories for the ACO
and RCO for τ = 12 for Kcr = Kca = 30. Other
parameters are shown Table 3.

the above section. The RCO continues to show in-phase
synchronization in the presence of time delay. Interest-
ingly, for a non-zero τ , the value of R becomes close to -1
for large dissociation constant for the ACO, suggesting the
development of anti-phase synchronization in the presence
of intercellular time delay. The in-phase synchronization
in the RCO and anti-phase synchronization in the ACO
for a finite τ can also be clearly seen from the stochastic
trajectory plots (Fig. 5(B) and (C)).

4. CONCLUSION

Synchronizations of genetic oscillators are crucial for many
biological processes, including precise vertebra formation

during embryonic development Lewis (2003); Venzin and
Oates (2020). Amid inherent stochastic fluctuations due
to biochemical reactions, how do the intercellular cou-
pling leading to robust synchronizations is poorly under-
stood? To understand the role of intercellular coupling,
we have developed two models for coupling, namely the
ACO (activator-based coupled gene oscillator) and RCO
(repressor-based coupled gene oscillators). The impacts of
signaling molecules are effectively incorporated via the
usual Hill functions. We have included an effective cou-
pling delay due to the dynamics of signaling molecules.
The single autonomous oscillator in our study is based
on delayed inhibition where the dynamics of intermediate
species cause the delay.

We have solved our stochastic systems of coupled oscil-
lators in the presence and absence of delay using the
algorithm as proposed in Barrio et al. (2006). We have
found that the RCO shows robust in the presence and
absence of time delay. Interestingly, in the ACO, we have
not found a clear synchronization without coupling delay.
However, in the presence of coupling delay, the ACO can
lead to anti-phase synchronization. Our results suggest
that the naturally occurring intercellular couplings might
be based on repression rather than activation, where in-
phase synchronization is crucial.
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