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Abstract: Governments must detect and treat people with tuberculosis, also prevent the
uninfected community. In this sense, must promote the study of algorithms for the prediction
of the epidemic trend. This paper addresses the forecasting of tuberculosis cases in Bogota,
considering health surveillance system data from 2007-2020. Forecasts are obtained using the
Kalman Filter and the Robust Kalman Filter. Results show better performance using the robust
filter for six-week tuberculosis cases prediction.
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1. INTRODUCTION

Tuberculosis (TB) is an infectious disease and one of the
top 10 causes of death worldwide. In 2019, about 10 million
people developed TB, and 1.4 million died (World Health
Organization, 2020). In Colombia, during 2020, 11,390
people became ill with TB, of which 10,632 were new cases,
revealing that in the country, the incidence rate of tuber-
culosis is 20.88 per 100,000 inhabitants (Ospina-Martinez
et al., 2021). This disease is caused by Mycobacterium
tuberculosis, and its more known form affects the lungs
(pulmonary TB), being contracted by airways when people
infected with TB cough and expelled the bacteria.

The prediction of the epidemic trend from surveillance
data can be used for the health system to prevent and
control the occurrence of TB cases. In state-of-the-art,
there are several forecasting methods for infectious dis-
eases (Zheng et al., 2021). However, TB forecasting is still
a challenge given the abrupt changes of trend and disper-
sion of TB incidence relative to each region or country.
Notice that the behavior of this epidemic depends on sev-
eral factors related to the contagious disease, government
laws, and socioeconomic factors. Some of these factors are
random and variables in time, e.g., the increase of immi-
grant populations, representing a significant portion of TB
epidemics (Kavanagh et al., 2020). This paper addressed
the prediction of TB cases using the Robust Kalman Filter
(RKF) and Auto-Regressive (AR) models.

Zheng et al. (2021) performed the time series analysis
under the hybrid method Box-Jenkins and Elman neu-
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ral network to predict TB incidence in Kashgar (China),
where there is a high rate of TB occurrence. They conclude
that this AR hybrid method is effective and can predict
TB incidence in this place. Ku and Dodd (2019) developed
a prediction model regarding the impact of Taiwan pop-
ulation aging on the incidence of tuberculosis. The model
developed indicates that by 2035 the TB incidence rate
will decrease by 54 % compared to 2015. Nonetheless, they
emphasize that they will have higher TB mortality rates
for older adults. Liu et al. (2019) addressed the pulmonary
TB case prediction in southeast China in Jiangsu province,
where TB incidence rates are high. They used the Auto-
Regressive Integrated Moving Average Model (ARIMA)
and the Back-propagation Neural Network (BPNN). Both
methods were evaluated to predict seasonality and trend
using error indices, where BPNN presented better results
for the prediction. Similar results were achieved using a
hybrid system incorporating the ARIMA and Nonlinear
Auto-Regressive Neural Networks (NAR) (Wang et al.,
2017). In (Azeez et al., 2016), the authors compared two
methods to forecasting TB incidence and analyzed its sea-
sonality in South Africa. These methods are the Seasonal
Auto-Regressive Integrated Moving Average (SARIMA)
and Neural Network Auto-Regressive (SARIMA-NNAR).

In Colombia, studies related to time series forecasting are
mainly addressed to other types of diseases. The forecast-
ing of Dengue disease was studied in (Martinez-Bello et al.,
2017), applying Bayesian hierarchical dynamic generalized
linear models and dealt with weekly incidence cases from
2008 to 2015. In (Chowell et al., 2016) have been treated
the forecast for Zika disease in the Antioquia region using
the generalized Richards model. In (ArunKumar et al.,



2021) performed a study to forecast the epidemiological
trends of the COVID-19 pandemic for 16 countries, in-
cluding Colombia; for this, the authors used the ARIMA
and SARIMA models. We highlight that there are not
enough studies about time series forecasting related to TB
in Colombia. The methods used in this article to forecast
the TB cases in Bogota consider AR models from training
data. We compared the performance of the prediction
using the Kalman Filter with different order of nominal
models. We also regard the uncertainties of the trained
models and use the RKF to obtain the forecast. Finally,
the accuracy of prediction is evaluated.

The rest of this paper is organized as follows: Section 2
introduce the Auto-Regressive model for data prediction;
Section 3 introduce the Kalman filter; in Section 4 is
presenting the Robust Kalman filter; in Section 5 are
explained the results and in Section 6 the conclusions.

2. AUTO-REGRESSIVE MODEL FOR DATA
PREDICTION

In this paper, we use the number of reported cases of
pulmonary TB in Bogota city from 2007 to 2020 extracted
from the Health National Institute (INS in Spanish).
The time series is formed by confirmed cases week by
week, reported by the SIVIGILA ( Colombian Vigilance in
Public Health System, by its acronym in Spanish). Figure
1 shows the confirmed cases of pulmonary TB in Bogota
during 2007-2020. The time series is divided into two data
groups for identification and validation of a state-space
model. We use the Numerical algorithms for Subspace
State Space System Identification (N4SID) technique to
obtain this model (Van Overschee and De Moor, 1994).
The model in (1)-(2) is describing in a canonical way,
which allows forecasting states according to the order of
the system. In this model xk ∈ Rn is the state vector to
be estimated with its corresponding state variables (χ),
yk ∈ Rp is the measurement signal, ωk ∈ Rm2 is the
state noise and vk ∈ Rt is the output noise. The nominal
matrices F , G and C have appropriated dimensions.
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3. THE KALMAN FILTER

The Kalman filter aims to find the optimal states estimates
x̂∗k, x̂∗k+1 by minimize the quadratic criterion (3) subject
to model (1)-(2).

min
ω̂k,v̂k,x̂k,x̂k+1

{
‖ x̂k − x̂k|k−1 ‖2P−1

k|k−1

+
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]−1 [
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]}
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(3)

The matrices Pk|k � 0, Q � 0 and R � 0 are the posteriori
estimate covariance, the covariance of the process noise
and the covariance of the observation noise, respectively.
The update of the matrix Pk|k is given by the Riccati
equation (4)-(5), and the Kalman gain Lk is given by (6).

Pk|k = Pk|k−1 − Pk|k−1CT (R+ CPk|k−1C
T )−1CPk|k−1, (4)

Pk+1|k = Q+ FPk|kF
T , (5)

Lk = Pk|k−1C
T (R+ CPk|k−1C

T )−1. (6)

Therefore, the current states of the model (1) are esti-
mated by the Kalman filter as follows,

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1). (7)

The readers can find more details about the Kalman filter
in (Sayed, 2008) and (Grewal and Andrews, 2014).

4. THE ROBUST KALMAN FILTER

The Robust Kalman Filter was introduced by Ishihara
et al. (2015). Consider the model in (8)-(9) which is
a representation of the model (1)-(2), but considering
uncertainties in the model,

xk+1 = (Fk + δFk)xk +Gkwk, (8)

yk = (Ck + δCk)xk + vk, k ≥ 0. (9)

The uncertain matrices δFk ∈ Rn×n and δCk ∈ Rp×n are
defined as follows,

δFk = Mk∆kEFk
, δCk = Nk∆kECk

, ‖ ∆k ‖≤ 1, (10)

where, EFk
and ECk

have appropriate dimensions, Mk

and Nk are a non zero matrices, and ∆k is an arbitrary
contraction. Assume that x0, wk and vk are mutually
independent zero-mean Gaussian random variables with
variances E{x0xT0 } = Π0 � 0, E{w0w

T
0 } = Qk � 0 and

E{v0vT0 } = Rk � 0, respectively. The RKF is deduced
based on the solution of the optimization problem (11)-
(12). The aim is to obtain a robust filtering that minimizes
the influence of the state noise ωk and measurement noise
vk in the states estimate of the model (8)-(9), with ek =
x̂k − x̂k|k−1.

min
ω̂k,v̂k,x̂k,x̂k+1

max
δFk,δCk

{Jk}, (11)



Fig. 1. Reported TB cases in Bogota for 2007-2020 period.
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The framework to describe the RKF in the filtered form
can be seen in Table 1 and their auxiliary matrices in (13)-
(16). To ensure the optimal response, the parameter α ≥ 1
is selected.
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Table 1. Recursive Robust Kalman Filter.

Consider equation (8), with Π0 � 0, Qk � 0, and Rk � 0.
Initial Conditions: P0|−1 = Π0 and x̂0|−1 = 0.

Step k ≥ 0: Update {x̂k+1|k;Pk+1|k} and {x̂k|k;Pk|k}.
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5. RESULTS

Accuracy of prediction was evaluated with the Mean Ab-
solute Error (MAE) measure, Mean Absolute Percentage
Error (MAPE) and Root Mean Square Error (RMSE),
which are commonly employed to assess forecasting models



(Shcherbakov et al., 2013). These performance indices are
computed according to:

MAE =
1

N

N∑
k=1

| ek |, (17)

MAPE =
1

N

N∑
k=1

∣∣∣∣ekyk
∣∣∣∣ 100%, (18)

RMSE =

√√√√ 1

N

N∑
k=1

e2k, (19)

where ek = yk − ŷk is the error between the original and
the forecasted series, and N is the number of the values
or points in the sequence.

To determine the order of model that allows ten weeks
prediction of TB cases, we perform different training
with the 70% of time series data, as shown in Fig. 1
in blue color. In this sense, models with different order
n were obtained by N4SID algorithm and were made
the data estimation using the Kalman filter. From ten-
step prediction forward, we calculated the performance
indices (17)-(19) and define system order n = 17, since
this is the case with better behavior, as shown in Fig. 2.
Notice that the errors increase for higher values of n. We
assume unknown disturbances concerning imperfections
from the identification process, considering a standard
deviation of 4 TB cases. The filter design was made with
covariances Q = 16 and R = 0.1. The RKF uses the same
nominal model and covariances that the Kalman filter.
Additionally, the uncertain matrices are defined with the
parameters shows in Table 2. The auxiliary parameters are
α = 2 and µ = 1 · 105.

Table 2. Robust Kalman filter parameters.

EFk
=
[
f0 f1 f2 · · · fn−1

]
· 10−3, ECk

= C · 10−3,

Mk =
[
1 1 · · · 1 1000

]T
· 10−3, Nk = 0.5,

Table 3 shows training results for ten week TB cases
prediction in Bogota. The identification data serie has the
number of confirmed case of pulmonary TB during 485
weeks. Notice that the RKF achieve a better performance
that the nominal Kalman filter (KF). However, the indice
MAPE is higher than 25% for both approaches.

Table 3. Results of the training for ten-week
TB cases prediction.

RMSE MAE MAPE

KF 4.42 3.45 36.33
RKF 3.51 2.72 26.97

The validation data have the information of 209 weeks.
Fig. 3 shows the measured signal in brown color and the
forecasting TB cases given by the KF and RKF in blue
and black colors, respectively. Notice that the KF and
RKF allowed forecasting the details from the original series
related to the trend. The above is according to RMSE and
MAE indices show in Table 4, notice that the approach
using the RKF gets lower errors. However, looking at Fig.

Fig. 2. Selection of the order of model using the Kalman
filter and N4SID algorithm. The selected order of
model is n = 17.

3 is evident that prediction does no achieve to hit when the
signal has abrupt changes and signal dispersion is higher.
Notice that the MAPE index is more suitable to rate this
phenomenon.

Table 4. Results of the test for ten-week TB
cases prediction.

RMSE MAE MAPE

KF 5.95 4.66 27.40
RKF 4.87 3.85 21.54

Fig. 4 shows the result of diminishing the number of
predictions to six weeks for TB cases. In this figure, the
measured signal is brown, and the KF and RKF forecast
TB cases in blue and black colors, respectively. Notice
that getting better results for the RKF. Therefore, TB
case forecasting is nearer to actual cases. The above is
confirmed by the reduction of error indices in Table 5.

Table 5. Results of the test for six-week TB
cases prediction.

RMSE MAE MAPE

KF 6.44 5.02 29.97
RKF 4.10 3.18 18.01

6. CONCLUSION

In this article, we made weekly forecasting of TB cases in
Bogota. A comparative study between the nominal and ro-



Fig. 3. Results of the test for ten-week TB cases prediction .

Fig. 4. Results of the test for six-week TB cases prediction .



bust Kalman filter was carried on. The RKF outperformed
the KF for the accuracy of prediction. Although the RKF
showed low errors to six-week TB cases prediction, we
think that other methods must be studied to fit the in-
cidence of TB considering more extended periods forward.
For future works, we intend to extend this study using
the RKF for discrete-time Markovian jump linear systems
(Escalante et al., 2021), also the Extended Kalman filter,
the Unscented Kalman Filter, Particle filtering, and deep
learning networks.
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