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Variable During Anesthesia
Clara M. Ionescu∗, Student Member, IEEE, Robin De Keyser, Bismark Claure Torrico, Tom De Smet,

Michel MRF Struys, and Julio E. Normey-Rico

Abstract—This paper presents the application of predictive con-
trol to drug dosing during anesthesia in patients undergoing
surgery. The performance of a generic predictive control strategy in
drug dosing control, with a previously reported anesthesia-specific
control algorithm, has been evaluated. The robustness properties
of the predictive controller are evaluated with respect to inter-
and intrapatient variability. A single-input (propofol) single-output
(bispectral index, BIS) model of the patient has been assumed for
prediction as well as for simulation. A set of 12 patient models were
studied and interpatient variability and disturbances are used to
assess robustness of the controller. Furthermore, the controller
guarantees the stability in a desired range. The applicability of
the predictive controller in a real-life environment via simulation
studies has been assessed.

Index Terms—Anesthesia, constraints, drug dosing control,
model-based predictive control, nonlinear model, robustness.

I. INTRODUCTION

DURING the last decade, the control technology has suc-
cessfully influenced modern medicine through robotic

surgery, electrophysiological system life support, and image-
guided therapy and surgery [1]. Another area of medicine suited
for applications of control is clinical pharmacology in general,
and a particular case is the anesthesia and critical care unit
medicine. Within this particular group of applications, monitor-
ing and controlling the depth of anesthesia for patients during
surgery offers interesting challenges to the control engineer [2].

This topic captured the attention of engineers and clinicians
already decades ago [3], starting with expert systems that offer
advice to the anesthesiologist upon optimal drug infusion rate
during clinical trials [4]. It soon became clear that control of
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anesthesia poses a manifold of challenges, with multivariable
characteristics [5], different dynamics depending on anesthetics
substances [6], [7], and stability problems [8]. Further investiga-
tions proved propofol to be an anesthetic tackled well in control
problems for hypnosis [9], [10], while recent studies showed
that the control performance may also depend on the controlled
variable [11], [12].

This paper presents a simulation study for the control of ad-
ministration of propofol using the BIS as controlled variable.
Propofol is an intravenous hypnotic providing a rapid onset
time and relatively short duration of action, while the BIS (As-
pect Medical Systems, Norwood, USA) is a commercially avail-
able measure of the effects of anesthetics and sedatives on the
brain based on a bispectral analysis of the patient’s EEG. It is
important to realize that the BIS, like other measures such as
midlatency auditory evoked potentials or entropy analysis of the
EEG, is a surrogate measure for the depth of anesthesia as there
is no direct measure available. Therefore, BIS will only be one
of multiple indicators used by the anesthetist to safeguard the
patient’s wellbeing during an anesthetic procedure. In spite of
these limitations, automated feedback control of propofol ad-
ministration using the BIS as a controlled variable can serve
as an automated pilot during long periods of surgery requir-
ing a stable anesthetic, preserving the anesthetist’s vigilance for
critical events. The nonlinear response profile and inter- and in-
trapatient variation of the patient’s hypnotic state to infusion of
propofol should be handled by a robust controller. From a clin-
ical point of view, an ideal controller would guide the induction
of anesthesia in order to reach the target as fast as possible with-
out initial overshoot. Afterwards, the controller would simply
maintain the desired target as well as possible. Therefore, from
control engineering viewpoint, model predictive control (MPC)
plays a crucial role in solving such complex problems.

The original objective of the paper is threefold: 1) to compare
the performance of a generic predictive control strategy, which
is applied in drug dosing control, with a previously reported con-
trol algorithm specifically developed for anesthesia; 2) to evalu-
ate via extensive simulation studies the robustness properties of
the predictive controller with respect to inter- and intrapatient
variability; and 3) to assess the applicability of the predictive
anesthesia controller in a real-life clinical environment. In this
contribution, the predictive control strategy extended predic-
tion self-adaptive control (EPSAC) [13] is compared to a model
adaptive controller for the control of depth of anesthesia. An
overview of the models used for prediction and for control is
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Fig. 1. Compartmental model of the patient, where PK denotes the pharma-
cokinetic model and PD denotes the pharmacodynamic model.

given in the next section. The EPSAC–MPC algorithm is de-
scribed in Section III, and stability and robustness are analyzed
in Section IV. The comparison between the model adaptive con-
troller and another published controller was described earlier
in the literature [14]. Closed-loop simulations for set point fol-
lowing and disturbance rejection are discussed in Section V. A
conclusion section summarizes this comparison. A campaign of
clinical trials has been approved in the meantime and scheduled
for the coming year in the University Hospital Ghent, Belgium.

II. REALISTIC PATIENT MODEL

During anesthesia, when predictive control is intended for a
precise administration of drugs, the model used in prediction
becomes of vital importance. Such model must capture well
enough the dynamics of the patient in response to the specific
drug considered (in our case propofol). The relationship be-
tween drug infusion rate and the drug effect can be described
with pharmacokinetic and pharmacodynamic models. Pharma-
cokinetic models describe the distribution of the drugs in the
body and pharmacodynamic models describe the relationship
between blood concentration of a drug and its clinical effect.
Normally, these models can be identified for different kind of
drugs by using a specific population of patients. For most anes-
thetic agents exist already several models [15]. When consider-
ing propofol as the manipulated drug, the pharmacokinetics can
be described by a three-compartment model (see Fig. 1)

ẋ1(t) = −[k10 + k12 + k13 ]x1(t) + k21x2(t)

+ k31x3(t) + u(t)

ẋ2(t) = k12x1(t) − k21x2(t)

ẋ3(t) = k13x1(t) − k31x3(t) (1)

where x1 denotes the amount of drug in the central compartment
(blood). The peripheral compartments two and three model the
drug exchange of the blood with well and poorly perfused body
tissues. The amount of drug in these compartments is denoted
by x2 and x3 , respectively. The constants kji for j �= i represent
the drug amount transfer rate of drug from jth compartment
to the ith compartment. The constant k10 is the rate of drug
metabolism and u(t) is the infusion rate of the anesthetic drug
(propofol) into the central compartment (blood). From the drug

amount in each compartment, the related concentrations are
obtained by division with each compartment’s volume. Cp is
thus obtained by dividing x1 with V1 the central compartment’s
volume.

Multiple population models for propofol have been devel-
oped in the past. One popular model is the three-compartmental
Schnider model for propofol [16], which calculates the constants
using the following equations:

V1 = 4.27[l], V2 = 18.9 − 0.391(age − 53)[l], V3 = 238[l]

Cl1 = 1.89 + 0.0456 (weight − 77) − 0.0681(lbm − 59)

+ 0.0264(height − 177)

Cl2 = 1.29 − 0.024 (age − 53), Cl3 = 0.836, k10 =
Cl1

V1

k12 =
Cl2

V1
, k13 =

Cl3

V1
, k21 =

Cl2

V2
, k31 =

Cl3

V3
(2)

with lean body mass (lbm) MALE:

lbm = 1.1 weight − 128weight2

height2 .

Lbm FEMALE:

lbm = 1.07 weight − 148weight2

height2 .

As can be observed in (2), the values k10 , k12 , k13 , k21 , and
k31 depend on the mass (in kilogram), height (in centimeter),
age (in years), and gender of the patients. The other equation
parameters and constants of (2) were identified for the propofol
drug [24].

The pharmacodynamics are characterized by a first-order
function related to the central compartment concentration Cp

in blood

ẋe(t) = −ke0 xe(t) + k1e
ẋ1(t) (3)

where ke0 and k1e are constants and xe is the amount of drug
in the effect compartment. The effect compartment is defined as
a negligibly small compartment connected to the central com-
partment. Assuming that the effect compartment is negligibly
small, k1e is an arbitrarily small fraction of ke0 [17]. Knowing
keo , the apparent concentration in the effect compartment can be
calculated since keo will precisely characterize the temporal ef-
fects of equilibration between the plasma concentration and the
corresponding drug effect. Consequently, the equation is often
used as

Ċe(t) = ke0(Cp(t) − Ce(t)) (4)

with Ce called the effect-site compartment concentration. For
quantifying Ce during real-time monitoring, some commercial
devices can be used. One of the devices used by clinicians to as-
sess the depth of anesthesia is the BIS (Aspect Medical Systems,
www.aspectms.com). The BIS monitor uses the EEG, closely
related to the level of consciousness of the patient, to derive a
monotonous measure of the depth of anesthesia ranging from 0
to 100 [1], [7]. The BIS can vary from 0 to 100. Zero means that
the patient does not have cerebral activity (i.e., isoelectric EEG),
and 100 denotes that the patient is fully awake AND conscious
(e.g., for BIS = 70, the patient is conscious but sedated). When
undergoing surgery, the desired BIS target is 50 and must remain
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between 40 and 60, given that an adequate sedation is performed
by the anesthesiologist. The BIS variable can be related to the
drug effect concentration Ce by the empirical static but time-
varying nonlinear relationship [1], called also the Sigmoid Emax
curve

BIS(t) =
(

E0 − Emax
Ce(t)γ

Ce(t)γ + Cγ
50

)
(5)

where E0 denotes the baseline (awake state—without drug)
value, which, by convention, is typically assigned a value of
100, Emax denotes the maximum effect achieved by the drug in-
fusion, C50 is the drug concentration at half maximal effect and
represents the patient’s sensitivity to the drug, and γ determines
the steepness of the curve in (5). The effect site compartment
that is connected to the central (Cp ) compartment is given by

Ċe(t) = −0.456Ce(t) + 0.456Cp(t) (6)

and the nominal patient model is completed.

III. EPSAC APPROACH TO MODEL PREDICTIVE CONTROL

Generally, an MPC algorithm consists of applying a control
sequence that minimizes a multistage cost function of the form

J =
N2∑

k=N1

[y(t + k | t) − w(t + k)]2 +
Nu −1∑
k=0

λ[∆u(t + k|t)]2

(7)
subject to

ymin ≤ y(t + k|t) ≤ ymax ∀k = 1, . . . , N2

umin ≤ u(t + k|t) ≤ umax ∀k = 0, . . . , Nu − 1

∆umin ≤ ∆u(t + k|t) ≤ ∆umax ∀k = 0, . . . , Nu − 1 (8)

where N1 and N2 are the minimum and maximum costing hori-
zons, Nu is the control horizon, λ is the control weight, w(t + k)
is a future setpoint or reference sequence, ∆u(t) is the incremen-
tal control action, ∆ = 1 − q−1 , and y(t + k | t) is the optimum
k-step ahead prediction of the system output y(t) on data up to
time t.

A. Computing the Predictions

The process output can be represented as

y(t) = x(t) + n(t) (9)

where x(t) is the model output when is applied a control input
u(t) and n(t) represents the effect of the disturbances and the
modeling errors. The model output x(t) is given by the generic
dynamic system model

x(t) = f [x(t − 1), x(t − 2), . . . , u(t − 1), u(t − 2), . . .].
(10)

Further on, the disturbance n(t) can be modeled by

n(t) =
C(q−1)
D(q−1)

e(t) (11)

where e(t) is uncorrelated (white) noise with zero mean value,
with C(q−1) and D(q−1) monic polynomials in the backward

shift operator q−1 of form

C(q−1) = 1 + c1q
−1 + c2q

−2 + · · · + cncq
−nc

D(q−1) = 1 + d1q
−1 + d2q

−2 + · · · + dndq
−nd .

The fundamental step in MPC methodology consists in predict-
ing the process output at time instant t, indicated by {y(t + k|t),
k = 1, . . . , N2}, over the prediction horizon N2 . Notice that
since the definition of y(t + k|t) implies that they are estimated
(predicted) values, there is no need for explicit notation as ŷ.
This observation applies also for the noise variable n and model
output x. The prediction of the process output y(t + k|t) is
based on:

1) the measurements available at sampling time instant t

{y(t), y(t − 1), . . . , u(t − 1), u(t − 2), . . .} ;

2) the future values of the input signal, calculated at time t

{u(t|t), u(t + 1|t), . . .} .

Using the generic process model (9), the predicted values of
the output are

y(t + k|t) = x(t + k|t) + n(t + k|t). (12)

In EPSAC [13], the prediction of x(t + k|t) and n(t + k|t) is
done, respectively, by recursion of the process model (10) and
by using filtering techniques on the noise model (11). In the
case of linear models, the predictions can be done based on the
diophantine equations [18].

B. Optimization Procedure

The optimization procedure is a crucial step in MPC algo-
rithms. The numerical complexity depends on the character-
istics of the models in terms of linearity, constraints, number
of manipulated and controlled variables, etc. For linear mod-
els without constraints, there are some MPC techniques that
solve the optimization procedure analytically [13], [19]. The
solution can then be reduced to a linear controller of two de-
grees of freedom (DoFs) (see Fig. 3) [20], and it is important
when analysis is performed. For nonlinear and linear models
with constraints, it is not possible to find an analytical solu-
tion. However, there are several powerful optimization methods
to solve the optimization problem using iterative procedures
(Gauss–Newton method, the Levenberg–Marquardt method, or
sequential quadratic programming) [21]. Either analytically, ei-
ther by using iterative procedures, the optimal input sequence
can be computed along the input horizon Nu . Nevertheless, due
to the receding horizon strategy of MPC, only the optimal input
u(t) at the present moment is applied to the process, and, for the
next sample period, the optimization problem is solved again.

From controller analysis standpoint, an analytical solution is
important. For a special case Nu = 1, N1 = 1, N2 = N , and
λ = 0, the optimal input is [13]

u(t) = (GT G)−1GT (w − yb) = k(w − yb) (13)

where k is a constant vector with dimension 1 × N , w is a vector
that contains the future reference,yb = [yb(t + 1|t), . . . , yb(t +
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Fig. 2. Resulted linear patient model structure by compensating the static
nonlinearity with a nominal BIS curve. See text for explanations.

N |t)]T (or base output) is a vector that contains the output pre-
diction for an input u(t + k|t) = 0,∀k = 0, . . . , N − 1. Based
on diophantine equations, a matrix representation of yb can be
obtained

yb = Fyp + Gpup

F=




f1,1 f1,2 . . . f1,na +1
f2,1 f2,2 . . . f2,na +1

...
...

. . .
...

fN,1 fN,2 . . . fN ,na +1


 , yp =




y(t)
y(t − 1)

...
y(t − na)




Gp =




g′1,1 g′1,2 . . . g′1,nb

g′2,1 g′2,2 . . . g′2,nb

...
...

. . .
...

g′N,1 g′N,2 . . . g′N,nb


 , up =




u(t − 1)
u(t − 2)

...
u(t − nb)


.

The control input (13) becomes:

u(t) = kw − kFyp − kGpup = kw w(t)

− (Py (q−1)y(t) + Pu (q−1)u(t − 1)) (14)

where kw =
∑nk

i=1 k(i) and Py , Pu are polynomials in the back-
ward shift operator q−1 .

IV. ROBUSTNESS AND STABILITY ANALYSIS

The nonlinearity introduced by the BIS variable is compen-
sated by using the inverse of the referenced Sigmoid curve (5)
and a linear model for the MPC controller is obtained (see
Fig. 2).

In the prediction model, the controller uses the nominal Sig-
moid curve, independent on the patients that are tested in sim-
ulation. This assumes that the controller is robust enough to
compensate the interpatient variability. Notice that external dis-
turbances such as surgical stimulation and blood loss are also
present. Several approaches on stability and robustness analysis
can be found in literature for MPC controllers. However, the
analysis is not so trivial when constraints apply or nonlinear
models are used.

In this application, the only constraints used are on the ma-
nipulated input (propofol infusion rate) as follows: minimum
flow rate of zero and maximum flow rate of 3.3 mg/s. Hitherto,
no output constraints were necessary, because for all simulated
patients, the BIS values remain within acceptable limits agreed
by anesthesiologists. The specific case with constraints on the
input (0 ≤ u ≤ sat) is studied for the control horizon Nu = 1

Fig. 3. Control scheme for two DoFs for the MPC strategy.

and the prediction horizons N1 and N2 used as tuning param-
eters. Notice that for Nu = 1, the constrained MPC controller
is equivalent to clipping, a case valid only for monovariable
systems [13]. The term clipping assumes that the predictive
controller does not take into account constraints, while comput-
ing the optimal input rate to the process, but only afterward,
performing hard limitations if constraints are violated.

To study the stability and robustness, the block diagram of
Fig. 3 is considered, since a linear MPC can be reduced in a
2-DoF controller for analysis purposes [20].

From (14), W and C can be computed to obtain the 2-DoF
controller

W (z) =
kw

Py (z−1)
, C(z) =

Py (z−1)
1 + z−1Pu (z−1)

.

Additionally, there is a saturation nonlinearity at the input of
the process φ (see Fig. 3). For stability analysis, the nonlinear
element can be approximated by a describing function. It is valid
for most of the processes with low-pass filter characteristics as is
the case of the patient models. To obtain the describing function,
first it is considered that the nonlinear element has the following
input:

X sin(ωt)

since the output will be a nonlinear function, and it can be
approximated by a Fourier series

Yf (ωt) = A0 +
∞∑

n=1

(An cos(nωt) + Bn sin(nωt)). (15)

By definition, the describing function is given by

φ =
Y1

X
� θ

where X is the amplitude of wave input, Y1 =
√

A2
1 + B2

1 , and
θ = tan−1 (A1/B1). For the case of saturation nonlinearity, the
describing function is

φ =
2
π


sin−1

(
sat

X

)
+

sat

X

√
1 −

(
sat

X

)2



where sat = 3.33 is the amplitude of the saturation. From Fig. 3,
the frequency closed-loop response is

y

w′ =
φL(jω)

1 + φL(jω)

where L(jω) = P (jω)C(jω), P is the process or patient trans-
fer function. The characteristic equation is 1 + φL(jω) = 0 or
L(jω) = −1/φ.

Consider that L is minimum phase (as is the case for this drug
dosing control application), according to the stability criteria, if
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Fig. 4. Nyquist plot depicting the locus for −1/φ and the general patient
model defined by L(jω).

the locus of L(jω) does not intersect the locus of−1/φ, then the
closed-loop system is stable. Otherwise, the system is unstable
or presents a limit cycle.

Fig. 4 shows the locus of −1/φ for the case of saturation
nonlinearity, it starts at −1 and goes to −∞. There is a critical
point at−1 that must be considered for stability analysis because
if the locus of L(jω) does not involve the critical point, then it
will not intersect −1/φ. Thus, the stability analysis is reduced
to a linear analysis, and it means that if the closed-loop system
without input saturation is stable, then it will remain stable under
input saturation. Therefore, it is enough to consider the linear
analysis tools for the stability and robustness.

The robustness analysis is performed considering that the
modeling errors of the patient can be represented as unstruc-
tured uncertainties, that is, P = Pn + ∆P = Pn (1 + δP ) with
Pn the nominal patient. In order to maintain closed-loop sta-
bility under model uncertainties, the following relation must be
satisfied [22]:

| δP (z) |< Ir (ω) =
| 1 + C(z)Pn (z) |
| C(z)Pn (z) | (16)

for ∀ω ∈ (0, π/Ts), Ts is the sample time , z = ejω , with Ir (ω)
defined as the robustness index of the controller.

V. RESULTS

In this section, the control performance is compared for the
model-based adaptive controller versus the EPSAC–MPC con-
troller. In addition, the robustness for the latter is observed.

A. Patients

The characteristics of these patients are given in Table I. The
EPSAC controller design parameters are fixed for all patients
and chosen as: Nu = 1, N1 = 1, and N2 = 10. Based on ex-
pertise, Nu = 1 is the most simple choice from practical engi-
neering point of view, and it also gives satisfactory performance
for stable processes. Moreover, our extensive simulation study
indicated that the choices Nu = 2 and Nu = 3 did not result
in improved performance. The value for N1 is usually chosen

TABLE I
CHARACTERISTIC VARIABLES FOR EACH OF THE 12 PATIENTS USED IN THIS

STUDY. PATIENT MODELS DERIVED FROM INDUCTION DATA ONLY. SIMULATED

EFFECT FOR CONCENTRATIONS IN EXCESS OF 15 µg/ml WILL BE INACCURATE,
BUT THOSE CONCENTRATIONS ARE NOT ATTAINED DURING THE SIMULATIONS

Fig. 5. Magnitude plot depicting robustness index for the gain of the nominal
model and the error introduced by the interpatient variability.

equal to the dead-time index. In this simulation study, however,
no dead time has been taken into account. Currently, in view
of the planned clinical trials, the model and control strategy are
extended to include significant dead time originating from the
BIS measurement device. The value of N2 is, as usual, chosen as
a tuning parameter to tradeoff between fast response and robust
stability.

The nominal Sigmoid curve parameters are chosen for the
controller model: C50 = 7.5, γ = 3, E0 = 100, Emax = 100.
The variability of the Sigmoid curve between the modeled pa-
tients and the prediction model in the controller can be seen as
a variation on the gain. In the operating region (BIS:[40,60]),
the gain varies from 1.6K to 0.5K, where K is the gain of
the model. For the set of patients considered in this investiga-
tion, Fig. 5 shows that | δP (z) |< Ir (ω), that is, the system is
robustly stable.

Notice that in the EPSAC–MPC strategy presented in this
paper, the changes in the Sigmoid curve during the surgery are
not taken into account. In other words, a robust MPC controller is
expected to tackle both inter- and intrapatient variability. Further
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work will focus on an adaptive version of the controller, in order
to take care of this variability in a more efficient way.

B. Model Adaptive Controller

In the next section, the EPSAC results will be compared to
the results of a nonpredictive controller, which was specifically
dedicated for automated anesthesia. The latter is a model adap-
tive controller, which uses a Bayesian method to tune a standard
population curve to the responses for the specific patient. It has
been described in extenso in [14], and, in the current paper, it
will be further indicated by the acronym MAC.

Briefly, a medication delivery controller uses a patient re-
sponse profile to determine a concentration of medication that
will achieve the desired effect on the patient. The system es-
timates an individualized patient response profile using mea-
sured data points from induction phase (open-loop regimen), or
it uses a population-based patient response profile. The patient-
individualized relationship is applied during closed-loop con-
trol. A measure of the effect of the medication on the patient
is continuously acquired by the system and stored. These data
are used by the medication delivery controller in conjunction
with past data to continuously recalculate the patient response
profile. The reason for this adaptation is that the Sigmoid curve
is changing not only from one patient to another, but it changes
also during the surgery. The description of this controller does
not make the scope of this paper, and therefore, the interested
reader is referred to [14] for a comprehensive evaluation.

The MAC controller used in this comparison was tuned to-
ward its use in an anesthesia environment, where fast response
is preferred at the expense of acceptable undershoot values.

C. Closed-Loop Simulations

The evaluation of the control performance was described and
applied previously [24], [23]. BIS was defined as the controlled
variable, and the BIS target interval was set at [45,55]. This
range is in accordance with the manufacturer’s recommenda-
tions that the BIS has an accuracy of +/ − 5 BIS units. The
results should be interpreted keeping in mind a standard BIS
operating range for general anesthesia ranging 40–60. Seda-
tion procedures would typically aim at a BIS target around 70,
while a BIS level of 30 represents deep anesthesia. Obviously, it
should be kept in mind that the BIS is a surrogate measurement
for the hypnotic component of anesthesia, which will be ob-
served by the anesthetist in combination with the patient’s other
vital signs. It should be noted as well that the amplitude of the
BIS excursions is mainly determined by the stimulation profile
used for challenging the controllers, applying sudden changes
in BIS offset of up to 30 BIS units. As such, the absolute level
of the BIS peaks is less relevant than the statistic evaluation
of the resulting controller actions. The controller performance
metrics are calculated on the measured values of the controlled
variable (BIS) versus its target value and compared for MAC
and MPC controllers. The performance of the controllers was
evaluated during two periods: induction phase and maintenance
phase. Hereby, induction is defined as the time between start
of propofol administration until loss of consciousness, main-

Fig. 6. Closed-loop response of the controlled variable (BIS) during anaes-
thesia induction phase with MPC and MAC strategies.

tenance as the time between loss of consciousness and stop
propofol infusion.

Fig. 6 shows the closed-loop simulations for the controlled
output (BIS) for the MPC and MAC controllers in the first time
interval, called the induction phase. In this phase, the BIS is
brought to its reference value. The control performance over
the family of patients is affected due to interpatient variability,
when using a nominal model for prediction in the MPC strategy
(ref. Section V-A). Notice that the MAC strategy includes an
identification of the patient-specific parameters, and therefore,
it takes into account the patient variability to obtain a better
control performance. In the MPC strategy, this is not the case,
the controller being designed based on a nominal patient model
and robustness issues. Although the control strategies are sig-
nificantly different, the average behavior of the controllers is
similar. The difference best/worst in performance is better with
the MAC controller, which is beneficial from an operation room
management viewpoint. Notice, however, the intrinsic manner
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Fig. 7. Closed-loop response of the manipulated variable (propofol rate) dur-
ing anaesthesia induction phase with MPC and MAC strategies.

in which the MPC tackles interpatient variability. Fig. 7 depicts
the control effort corresponding to each strategy. From con-
trol engineer standpoint, the advantage of using MPC control is
that a smooth convergence to the steady-state propofol rate is
achieved. Although giving comparable performance, the MAC
controller requires a more aggressive control signal, resulting in
unusual peaks between clipping values.

The initial performance for BIS at induction was studied also
statistically by using the following parameters (see Table II):

1) TT : observed time-to-target (in seconds) required for
reaching first time the target interval of [55,45] BIS values;

2) BIS–NADIR : the lowest observed BIS value during
induction phase;

3) ST : settling time on the reference BIS value, defined
within ± 5 BIS (i.e., between 45 and 55 BIS) and stay
within this BIS range; and

4) US : undershoot, defined as the BIS value that exceeds
the limit of the defined BIS interval, namely, the 45 BIS
value.

During the induction phase, the time-to-target for the
EPSAC–MPC strategy has a rather high standard deviation
value. The reason is that for patients p3 and p6, the controller
brings asymptotically the BIS variable within the reference in-
terval. The MAC controller brings the BIS variable to the ref-
erence BIS interval, but the price it pays for its speed is the
aggressive control effort. The settling time ST for the EPSAC–
MPC has also a high standard deviation value from its mean, due
to the same asymptotical behavior. This result can be attributed
to the fact that the EPSAC–MPC controller is a more cautious
controller, making a tradeoff between small time-to-target, small
undershoot and robustness against patient variability. The MAC
controller overcomes this problem by making a patient-profile
identification.

However, the control performance should be acceptable also
during the surgery, as BIS is subject to disturbances. The evo-
lution is depicted by Fig. 9 and Fig. 8 later.

In Fig. 8 and Fig. 9, the controlled and manipulated variable,
respectively, are depicted for the MPC and MAC strategies.
Both tests are subject to noise and disturbances, the latter being
due to surgical intervention and blood loss. A statistical analysis
was carried also in this case. First, the performance error was
calculated according to the formula

PE =
BISmeasured − BIStarget

BIStarget
× 100. (17)

Subsequently, median performance error (MDPE) representing
the bias, median absolute performance error (MDAPE) repre-
senting inaccuracy, and wobble were calculated as described
later. MDPE is a measure of bias and describes whether the
measured values are systematically either above or below the
target value. MDPE was calculated as

MDPEi = medianPEij , j − 1, . . . , Ni (18)

where Ni is the number of values PE obtained for the ith sub-
ject. It should be noted that the MDPE indicates controller bias
without revealing any information on dynamic or higher fre-
quency behavior, nor on the amplitude of possible oscillations
in control.

MDAPE reflects the inaccuracy of the control method in the
ith subject

MDAPEi = median|PEij |, j − 1, . . . , Ni (19)

where Ni is the number of values |PE| obtained for the ith
subject.

Wobble is another index of the time-related changes in perfor-
mance and measures the intrasubject variability in performance
errors. In the ith subject, the percentage of wobble is calculated
as follows:

Wobblei = median|PEij − MDAPEi |, j − 1, . . . , Ni.
(20)

The overall control performance of MAC and EPSAC–MPC
for BIS is shown in Table III. The performance error is similar
in both the controllers. The MDAPE (p = 0.2374) and wobble
(p = 0.3567) are equal in both the controllers. The MDPE is
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TABLE II
CHARACTERISTIC INDEXES DURING INDUCTION-PHASE QUANTIFYING THE MAC AND EPSAC–MPC CONTROLLERS PERFORMANCE FOR EACH PATIENT,

ALONG WITH THE MEAN VALUE (MEAN) AND STANDARD DEVIATION (STD). SEE TEXT FOR EXPLANATIONS

Fig. 8. Closed-loop response of the controlled variable (BIS) during entire
surgery with MPC and MAC strategies.

significantly different between both the controllers (p <
0.0001), with the MAC controller showing a more negative
MDPE than the EPSAC controller. It should be noted that
MDPE represents the direction (over- or undercontrol) of the
performance errors rather than the size of the errors. A negative
MDPE indicates that the controller tends to overdose, leading to
BIS levels below target, whereas a positive MDPE might show
the tendence of a too light anesthesia. The MDAPE is a nec-
essary accompanying measure that does not indicate the sign
of a possible bias, but describes both the amplitude of possible

Fig. 9. Closed-loop response of the manipulated variable (propofol rate) dur-
ing entire surgery with MPC and MAC strategies.

TABLE III
OVERALL PERFORMANCE CHARACTERISTICS FOR THE MAC

AND EPSAC–MPC CONTROLLERS
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bias, as well as all other errors that prevent the controller from
approaching the target. The MDAPE for both the controllers
stays within 5%, which is acceptable from a clinical standpoint.

Furthermore, one should remember that closed-loop control
for drug delivery is an essentially asymmetric control operation,
since the controllers can only govern the infusion, not the elim-
ination of drug from the body, which is a much slower process.
Finally, it should be taken into account that the Bayesian MAC
controller will ignore any BIS error less than ±5, in accordance
with the manufacturer’s recommendations, whereas the EPSAC
controller does take into account any BIS variation. Based on this
knowledge, it can be interpreted that the two controllers show
similar performance, each within its own control approach: the
MAC controller will try to suppress any rise in BIS in a fast way,
whereas the EPSAC controllers show a more gradual behavior.
The expense for the MAC controller is that the BIS will drop
below target, and, as the controller does not adjust the target
once BIS is within ±5, it has a negative offset for control.

A last observation is that the EPSAC–MPC controller is not
tuned here for the disturbance rejection. The EPSAC disturbance
filter (11), available for tuning specific disturbances, is not em-
ployed here to tackle the disturbances coming from surgery, or
from modeling errors. It is left by default as a pure integra-
tor, to ensure zero steady-state error results. Further research
work is being scheduled in order to evaluate the benefits of such
disturbance filter tuning.

VI. CONCLUSION

The contribution of this paper is threefold: 1) the performance
comparison between a generic predictive control strategy and a
previously reported control algorithm specifically developed for
anesthesia; 2) the evaluation via extensive simulation studies the
robustness properties of the predictive controller with respect to
inter- and intrapatient variability; and 3) the assessment of the
applicability of the predictive anesthesia controller in a real-life
clinical environment. Specific for the EPSAC controller, due to
the fact that the nonlinearity of the system consists of a static
nonlinear gain, the closed-loop stability is guaranteed for the
range where the gain varies due to interpatient variability. Both
the controllers present a stable closed-loop behavior and titrated
propofol administration accurately, resulting in BIS values in the
reference interval. Also, they were able to induce the patients
within clinical accepted time limits and with significant low
undershoot. From clinical standpoint, both controllers perform
well. The MAC controller shows a faster onset of response to
rising BIS values, at the expense of more frequent peaks in the
manipulated propofol rate than the EPSAC–MPC controller. If
the offset filter in the MAC controller would be removed, the
performance might result in a tighter control. However, in this
comparative study, the MAC controller was used exactly as
published previously [23], where it was compared to a classical
PID controller, resulting in a gradual overview.

As a general remark, the tuning rules of the EPSAC–MPC
controller are intuitive to attain some performance specifica-
tions. The EPSAC–MPC algorithm has been previously used in
several real-life applications, making it suitable for use in clin-

ical trials. The EPSAC–MPC performance can be improved by
adding an adaptive gain scheduling in the first 200 s of the anes-
thesia, by varying the Sigmoid curve based on the real feedback
data (BIS monitor). Also, the disturbance filter can be suitably
tuned to reject specific disturbances and a recursive parameter
estimation algorithm adapting to the specific characteristics of
the patient is currently under research. A campaign of clinical
trials has been approved in the meantime and scheduled for
the coming year in the University Hospital Ghent, Belgium. Its
results will provide the material for a consecutive paper.
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