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Abstract This paper discusses a possibility to sim-
plify the number of parameters in the Hill curve by
exploiting special mathematical functions. This sim-
plification is relevant when adaptation is required for
personalized model-based medicine during continu-
ous monitoring of dose–response values. A mathemat-
ical framework of the involved physiology and mod-
elling by means of distributed parameter progressions
has been employed. Convergence to a unique dynamic
response is achieved, allowing simplifying assump-
tions with guaranteed solution. Discussion on its use
and comparison with other adaptation mechanism is
provided.

Keywords Hill curve · Continuous fraction expan-
sion · Mathematical model · Nonlinear dynamics ·
Variability · Dose–effect relation · Patient specificity

1 Introduction

In general, drug regulatory loops are becoming pop-
ular in clinical practice. Moreover, there is evidence
to indicate that closed-loop control of drug dosing
systems for anaesthesia performs better than man-
ual control [1]. These systems rely on the availabil-
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ity of a model which often is defined as a compart-
mental model with additional nonlinear functions to
account for pharmacokinetics and pharmacodynamics,
respectively [2,3].

A great variability in patient parameters exists, but
this does not pose any problem in the pharmacokinetic
(PK) part of the patient model—its coefficients are usu-
ally well characterized by biometric indicators which
can be directly specified for each patient (e.g. age, BMI,
height, gender). By contrast, pharmacodynamic (PD)
models are genericmodels based on population dynam-
ics and cannot be specified for each patient [3]. This
implies that robust control strategies are applied to cope
with great variations in patient’s dynamics and mod-
elling errors [2]. The approach leads to suboptimal per-
formance since robustness requires a trade-off between
sensitivity to changes in patient dynamics and over-
all closed-loop dynamic performance. Alternatively, a
pharmacodynamic model adaptation may be employed
[4]. This approach is more appealing, but the relatively
high number of model parameters and high degree of
nonlinearitymake this task tedious and linearizedmod-
els are used instead [3].

Over the past century a significant amount of work
has been dedicated to analysing, revisiting and apply-
ing the Hill curve as model for dose–response. Its
relation to power-law and exponential functions has
become almost dogmatic in the modelling community
[5]. Notable works describe the existence of adapta-
tion mechanism in the neurotransmitter system which
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follows a mixture between power-law and exponential
dynamic functions [6,7].

Hitherto, the Hill curve has been considered as
a static nonlinear characteristic, coupling the phar-
macokinetic model to the pharmacodynamic model.
The nomenclature is actually confusing in engineer-
ing terms, since pharmacodynamic implies the exis-
tence of a dynamic system, whereas the Hill curve
is essentially treated as a static nonlinearity. Never-
theless, through its parameters, the Hill curve char-
acterizes a broad variability in the patient response
to the drug effect and thus its parameters vary from
one individual to another. Moreover, resistance, or its
complementary feature, sensitivity, to the drug dosing
profile may change over time, denoting intra-patient
variability.

From a ligand binding perspective, the Hill equa-
tion is not a realistic representation of the actual pro-
cess and its limitations should be well recognized and
consequently used with care [8]. For the examples in
anaesthesia, this observation is important, since ion
transporters such as Na–K pump form the basis ele-
ment in nociceptor sensitization. The Hill model has
been extensively used when the relationship between
drug concentration and drug effect is nonlinear and sat-
urable.

From a modelling perspective of time-variant
dynamic systems, the Hill curve is not a suitable model
for continuous monitoring of dose–effect relationship.
The reason is its high number of parameters and high
nonlinearity in the parameters, requiring complex, non-
linear identification tools. The objective of this work
is to propose a mathematical framework which allows
to greatly simplify the structure of the Hill curve,
while preserving its features. Careful examination of
the literature revealed that mathematical models for
ligand binding for analysis are limited to static obser-
vations. Empirical developments of the Hill curve are
here supported by suitable equivalent models. The pro-
posed methodology uses convergence of continuous
fraction expansions to simplify the number of Hill
parameters.

2 Theoretical biology background

When drug kinetics are modelled, a series of reac-
tions are characterized as part of the dynamical process
involved. Physiologically based models for such reac-

tions are preferred above mathematical models which
offer merely tools at hand. The remainder of this sec-
tion is then limited to the discussion of those physically
plausible processes.

The ligand–receptor interaction involves a manifold
of states in which the binding of molecules occurs
sequentially:

R + 2L � RL + L � RL2 (1)

or independent, i.e. for two binding sites a and b, we
have that:

R00 + 2L � Ra0L + L
R0bL + L

� RabL2 (2)

The binding process is subjected to a rate which is
dependent on the threshold of kinetics, which may also
vary in time, as stimulating or inhibiting the binding
process. This is a result of the dose–responsewhen drug
intake takes place, showed to lead to slightly different
results in case of sequential or independent binding [8].

Thephysical explanationdiffers for the two schemes.
Consider the binding process modelled by a distributed
parameter system. In the sequential binding, it is neces-
sary that the first compartment is to be filled before the
second one starts to fill, etc. Themolecules are assumed
to be stacked progressively at the binding site. Such a
process is encountered in cases of ion transporters, e.g.
Na–K pump or Na–Ca exchanger where the Na ions
stack on top of each other. In case of independent bind-
ing process, more sites are available simultaneously
to the ligand. This scheme may be representative for
multimeric proteins, e.g. ligand-gated ion channels or
ligand-gated enzymes.

Employing Hill equation to observe the amount of
binding points for the two schemes, a positive coop-
erativity was necessary to obtain accurate estimates.
An important property thereof is that each successive
ligand-bound state must decrease or increase, as in a
recurrent manner. Also the 50% engagement of the
receptors varied with the degree of cooperativity. So
for the N compartments of the distributed parame-
ter system one may have no cooperativity (recurrence
= 1), positive (recurrence> 1) or negative (recurrence
< 1). This property becomes significant in the sequen-
tial binding case, with positive recurrence, affecting the
steepness of the Hill curve to approach saturation.
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Fig. 1 Illustration of three
cases of relevant functions

When modelled as a network, it has been shown to
exhibit a cyclic component, in which reversibility may
play an important role [8]. From a mathematical mod-
elling point of view, this implies a biphasic dynamical
system, requiring more than one Hill curves to model
the complex time-varying dose–response curve. The
steepness of the curve is then related to the interac-
tion and positive cooperativity among multiple ligand
binding sites.

For a sequential reaction scheme seen as a dis-
tributed parameter model, we have:

R+nL � RL+(n−1)L � · · · � RLn−1+L � RLn

(3)

which is a recurrent progression of binding molecules.
This can bemodelled by continuous fraction expansion
equations.

3 Mathematical formulation

3.1 Background

The rationale used in this work is based on approxi-
mating a exponential function to a linear function and
finding the common point of tangent or intersection.
Some textbook exampled can be used to illustrate the
existence of minimum one point and maximum two
point of convergence between the curves.

Equivalence of

ex = e · x, for [− 1.5; 1.5] (4)

2x = 2 · x, for [− 1; 2] (5)

10x = 10 · x, for [− 1; 1] (6)

is illustrated in Fig. 1.
Intersection appearswhen the following equivalence

holds: a · x = ax . One observes that for x > 1, a · x
increases at a higher rate than ax until another intersec-
tion occurs. For x � 1 this is reversed; i.e. ax increases
faster than a ·x . Hence, there are two solutions for every
a �= e, with a > 0.

Recall that e = 2.71828 and expresses the limits:

= lim
n−→∞

(
1 + 1

n

)n

(7)

= lim
x−→0

(1 + x)1/x (8)

For a ∈ �+\{1} let k = log(a) ∀a �= 0 and y = kx
and β = exp(k)

k �= 0. Then ax = a · x ←→ exp(y) −
βy = 0.

Let f : � → � : x → exp(x) − βx . Find x such
that f (x) = 0.

Case β > 0. Observe that f (x) > 0,∀x ∈
(−∞, 0). Since f (0) = 1 > 0 and f (∞) = ∞ there
must exist a local minima with function value ≤ 0,
which implies the existence of a solution.

Theorem There is a solution in (0,∞) iff there is a
critical point xc ∈ (0,∞) with f (xc) = 0.

If f ′(x) = 0, then exp(x)−β = 0 −→ x = log(β).
This implies the existence of a critical (unique) point.
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The point is positive iff β > 1. The function value is
then f (log(β)) = β − β log(β) ≤ 0 iff β ≥ e.

Theorem There is a solution in (0,∞) iff β ≥ e.

Case β < 0. In this case we have f (−∞) = −∞
and f (0) = 1 > 0. This implies that a solution exists
for f (x) = 0 in the interval (−∞, 0). This exists when
β > 0, which is not fulfilled in this case.

Notice that positive defined systems, such as PK–PD
models, require all solutions to be strictly positive.

To conclude, a solution exists when either a < 1 or
a

log(a)
≥ e. Further calculations indicate there is exactly

one solution for a < 1 or a
log(a)

= e; there are exactly
two solutions for a

log(a)
> e.

Alternatively, if one fixes a and solves for x , an
explicit solution can be obtained using the Lambert W
function (i.e. lambertw in MATLAB). This gives

ra · x = e(ln a)x ←→ x · e− (ln a)x = a−1 (9)

←→ (ln a)x · e(ln a)x = − ln a

a
←→ (10)

− (ln a)x = W

(
− ln a

a

)
←→ (11)

x = − 1

ln a
W

(
− ln a

a

)
(12)

which will always have one solution for the positive
defined system by the PD model.

3.2 Hill curve specifics

When expressing the dose–response relationship, the
Hill curve is a sum of related curves with different
steepness coefficients. To better understand the impli-
cations of this relation, consider the elementary rela-
tion:

d

dx
xn = n · xn−1 (13)

A typical Hill equation representing pharmacologi-
cal modelling of dose–response is given by:

Cγ

Cγ + Cγ

50

(14)

with C the concentration of molecules, C50 the con-
centration for achieving 50% effect and γ the degree of
interaction between the ligand–receptor binding sites.

Notice the values of this relation are always smaller
than one. This relation can be decomposed as a contin-
uous fraction expansion in backward form:

Cγ

Cγ + Cγ

50

� γCγ−1

γCγ−1 + γCγ−1
50

� · · · C

C + C50

(15)

which, in the limit, the last element can be reduced to:

1

1 + C50
C

(16)

with the ratio C50/C representing the relative degree
of changes in the actual concentration with respect to a
predefinedpopulation value ofC50 expected for achiev-
ing half effect. Introducing

f = C50

C
(17)

and re-iterating the convergence, one obtains:

1

1 + f γ
(18)

as the new form of the Hill curve. This is essentially the
anomalous diffusion equation for distributed, homoge-
neous structured, well-mixed process dynamics.

A typical Hill curve is depicted in Fig. 2. In this
figure, the slope of the curve is the steepness reach-
ing saturation of the Hill curve. As the concentration
C is changing, for the same values of 50% response,
the slope will change and saturation times vary accord-
ingly. If a sum of Hill curves is considered to be rep-
resented by the constitutive relation from (18), then
the dose–response is free to change in its time deriva-
tive. The slope is related to the degree of cooperation
in the ligand receptor binding process. Cyclic occur-
rences may delay or change the degree and thus affect
the convergence of the scheme and, consequently, the
slope of the dose–response curve.

4 Proposed approach

Figure 3 depicts relation (14) for several patients
selected from [2], i.e. for significant variations in the
values of γ andC50. One may observe the difference in
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Fig. 2 Generic Hill curve and the concept of derivative in rela-
tion to the slope, or equivalently the steepness of the dose–effect
relation

Fig. 3 Hill curve for several patients illustrating the concept of
inter-patient variability

response for the same input of drug bolus. Hence, this
figure gives an insight on the amount of inter-patient
variability one may expect in practice. Patients a and c
need a high effect site concentration before they start
to react, i.e. effect starts to decrease. Patient a has a
strong sensitivity to the drug after this minimum con-
centration of qe [equivalent ofC in relation (14)], and it
decreases very fast to 0. Patient c has a less sensitivity
to the drug, so it decreases slower. Finally, patient b
requires less amount of drug infusion before it reacts,
but the effect changes are extremely slow. It is clear
that each patient’s sensitivity to the drug is strongly
influenced by the γ and C50 parameters.

If the Hill curve is normalized with values between
0% (full drug effect) and 100% (no drug effect), one
obtains for a given γ value and for a given C concen-

tration a line for the PDmodel of the patient. However,
the sensitivity of the patient to the drug is also chang-
ing during treatment, i.e. the intra-patient variability
concept.

To show the validity of the proposed simplified
model, a simulation of the original form in (14) and
the simplified form in (18) are performed. A generic
population model indicates a value of the C50 = 3.5
[2,3]. Variations in the γ parameter values have been
reported from 0.25 to 9.25, following real data reports
[2]. The result of the original form is given in Fig. 4—
top, while the result of the proposed form is given in
Fig. 4—bottom. As observed, the results are identical,
suggesting that the proposedmodel has a valid structure
and function.

The identical result obtained supports the idea that
not all parameters are independent and in this con-
text a significant reduction in estimation effort can be
achieved. Several parameters from (14) are known dur-
ing the patient monitoring process. This information
is either preoperatively available from the patient or
via feedback loops from the monitoring devices. More
specifically, the E0 parameter is immediately available
as soon as the patient is connected to the sensor reading
(BIS) and while still conscious (i.e. just before admin-
istration of hypnotic drugs). The C parameter can be
initiated via the PK model determined from patient-
specific parameters and from the measured hypnotic
level (BIS) and by taking the inverse of (14) using nom-
inal parameters forC50 and γ . Once the parametersC50

and γ are adapted, the C can be calculated using the
same (14) with these updated values and continuous
inflow of data from the BIS monitor.

It can be observed in Fig. 3 that the slope remains
constant once below the threshold of BIS = 90 [9].
This implies twofold items:

1. that enough output data are available for identifi-
cation (recall that input is stepwise or impulsewise
and this is not a persistent excitation of the input
to ensure good converge of covariance matrix for
identification) and

2. that the linear approximation can be extracted, from
which the slope immediately gives γ .

The linear approximation performed within each
sample period according to the method described in [3]
is then evaluated against relation (18) using the math-
ematical framework described in Sect. 3. A number of

123



848 C. M. Ionescu

Fig. 4 Comparison
between the original (top)
and the proposed (bottom)
model formulation

50 samples moving window are used—corresponding
to 50s (i.e. sampling period of Ts = 1 s).

5 Comparison

There are only few reported closed-loop algorithms
adapting theHill curve to patient-specific profileswhen
dose–response relations are used in drug regulatory
problems. In the anaesthesia context, these are for neu-
romuscular blockade control [10] and for depth of hyp-
nosis control [11–13]. To compare with the proposed
formof theHill curve,we employ themethod described
in [14]. The authors use the full nonlinear Hill curve to
estimate during induction the patient-specific parame-
ters. This is a nonlinear procedure based on Bayesian
variances. The model estimator will continuously cal-
culate a sigmoid model based on the patient’s drug
response as in (14). The Bayesian optimization yields
minimization of the following cost function as the sum
of all least squares:

∑
(BISsample − ˆBIS)2 + (E0,p − Ê0,m)2

+ (Emax,p − Êmax,m)2 (19)

+ (C50,p − Ĉ50,m)2 + (γp − γ̂m)2 (20)

where E0 is the initial BIS value (usually between 90
and 100%), Emax is the maximum expected effect (i.e.
a maximum of 100% effect), x̂ denotes estimated val-
ues, p denotes population values, andm denotes model
values. In practice, both the observations and themodel
parameters may vary in magnitude over several orders
of magnitude. When this is the case, the model primar-
ilyworks tominimize the error in the large observations
and minimizes the deviation in the large parameters
from the initial population estimate, as the larger num-
bers typically have much larger squared errors. This
behaviour is undesirable and is handled by weighting
the squared error by the expected variance. In the case
of the model parameters, the expected variance repre-
sents theBayesian uncertainty about the parameter esti-
mate. As a consequence, the variance used to weight
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Table 1 Results of simulation for comparison purposes

Patient C50 E0 Emax γ

1 6.33 98.80 94.10 2.24

1-Bayes 5.89 ± 1.64 – – 2.17 ± 0.13

1-Linear 7.19 ± 0.89 – – 1.89 ± 0.08

2 13.70 83.10 151.00 1.65

2-Bayes 12.47 ± 1.89 – – 1.52 ± 0.12

2-Linear 14.00 ± 1.08 – – 1.67 ± 0.18

3 4.82 91.80 77.90 1.85

3-Bayes 4.56 ± 0.58 – – 1.78 ± 0.34

3-Linear 4.99 ± 0.78 – – 1.56 ± 0.44

Values reported as mean with standard deviations

the squared difference between parameter estimate and
population estimate is defined as the Bayesian vari-
ances. The cost function from (19) is then completed
with the variances for each covariate and a forgetting
factor over the sampled interval of measured values.
The actual minimization fully described in [14] uses
the Levenberg–Marquardt method for fitting nonlinear
models.

The dataset from [2] has been employed to com-
pare the effectiveness of the two estimation algo-
rithms. A desktop computer DELL Latitude E5530
running MATLAB R2014/Simulink with Optimiza-
tion and System Identification Toolboxes has been
used. The real values for simulation are given in Table
1, selected as being a nominal patient case and two
extreme patient cases. The estimated values along
with mean and standard deviations are also given.
The estimation procedure was ran in the BIS interval
90–30%.

The Bayesian algorithm has estimates closer to the
real simulated values; however, the time for estimating
the parameter values takes significantly longer than the
sampling period of a controller which may be used in
closed loop (e.g. Ts = 1). The execution times of the
proposed method for estimating relation (18) with the
equivalence to a linear approximation are in the order of
tens of milliseconds. We conclude the Bayesian algo-
rithm is suitable for target-controlled infusion (open-
loop control) and not for feedback-based closed-loop
continuous control. If the parameters of the Hill curve
are to be adapted only once, i.e. at the beginning of
the closed-loop control, then both methods are equally
suitable.

6 Discussion

6.1 On modelling

Drug release and effect dynamics have been extensively
described by power-law functions for both continuous
(i.e. intravenous) and intermittent administration (i.e.
oral). Although specific dynamics have been observed
in drug release profiles, these have been considered
nonsignificant when power-law or exponential mod-
els were employed [5]. One may easily provide mod-
els combining both these dynamics with tools emerged
from mathematics and physics by means of fractional
calculus, with specific application of theMittag-Leffler
function. Several works have considered anomalous
diffusion and fractal kinetics to improve model per-
formance and provide a natural solution to observed
profiles [15–17].

6.2 On adaptation

When analysing the inter-patient and intra-patient vari-
ability, the need for adaptation during continuous mon-
itoring of dose–response relation becomes justified. In
[9] it has been shown that the variability can increase up
to 500% in terms of static gain, i.e. the sensitivity of one
patient to the same amount of drug as that of another
patient. It is clear that a generally valid model is obso-
lete. However, the drug effect curve follows a specific
form as a function of the effect site concentration. In
(14), the meaning of C50 is the value of the effect site
concentration when the effect has reached 50%. In this
context, this is not an independent unknown variable.
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Moreover, one does not need to identify the absolute
values of the unknownC ,C50 and γ variables, but only
their difference to the generic population model values
used as a baseline reference, which are available for
specific drugs in specialized literature.

Adapting the Hill curve during induction phase is
necessary to overcome the inter-patient variability with
respect to the population dynamics model parameters
available as reference/start-up values. The particular
advantage of this phase is that disturbances (e.g. surgi-
cal stimuli) are not present so the output of the system
(drug effect on patient) can be correlated directly to the
changes in the input drug rate profiles. Once the char-
acteristic Hill curve is obtained in this patient-specific
context, it can be used either in feedback-based control
loops [11,12,18], or fuzzy-based loops [19], or predic-
tive control loops [2,20].

During the maintenance phase, initiated after the
induction phase is completed, the patient response to
similar drug ratesmaychange.This is a characteristic of
a LPV system, since drug release from slow-acting tis-
sue diffusion rates (e.g. in fat) may account for delayed
dynamics. If this is not taking into account properly,
over-dosing occurs, such as in other drug delivery prob-
lems [21,22]. On short term, this is not problematic,
but adverse effects appear after the recovery time of
the patient (e.g. nausea, vomiting, cardiac complica-
tions). A significant effect is that of anesthesiologist in
the loop, which takes action to complement the actions
of the regulatory loop algorithm [23]. These additional
actions may be beneficial to the patient on short term
but may destabilize the overall closed loop. The latter
is due to the fact that the actions of the anesthesiologist
are unknown to the regulatory algorithm, and they are
seen as pure disturbances, creating additional changes
in the drug infusion rates.

Other problems occur in the maintenance phase
when adaptation of the Hill curve is employed, since
there is a closed loop (i.e. feedback effects) and there
is a disturbance profile, along with anesthesiologist
actions, also seen as disturbances [23]. In fact, the
actions of the anesthesiologist could be used to detect
new dose–effect relationship Hill curve values, in the
assumption of absence of surgical stimuli and stable
patient dynamic signals.

6.3 On drug trapping

Naturally, tissue porosity, molecular binding and per-
meability vary within the organ, within the system and
within the assumed compartment [24]. Taking tissue
specificity into account when modelling PD dynamic
profiles may lead to an increased model complexity.
A trade-off between the usefulness and computational
efficiency of such models must be made when eval-
uating the model objectives. If prediction for treat-
ment optimization is envisaged, then one may include
as many details as possible, to account for a person-
alized healthcare plan. If mere evaluation of dosing
profiles and observational studies is involved, tissue
specificity may be limited to the strictly necessary
number of details. If data are available, data-driven
modelling/identification may be performed and model
parameters tuned to fit the specificity of the case.

Existence of hysteresis in the dose–effect curve is
of great importance when trying to explain under-
and over-dosing mechanisms [25]. Tissue heterogene-
ity accounts for a great deal of anomalous diffusion of
molecules, and binding schemes may not preserve the
recurrence once assumed. This will affect the C50 and
the corresponding C values for the same patient. The
tissue may be viewed as a sponge with several degrees
of heterogeneous porosity, while also exhibiting nonlo-
cal geometry and time-varying properties. This induces
modulation effects and changes in the tolerance, the
thresholds and the obtained effects equivalent for the
same amount of drug concentration profiles. Hence, a
challenging problem since in this context no unique
solution exists to obtain the desired C50, facilitating
improper drug dosing profiles.

As such, time dependency has been considered hith-
erto. However, tissue heterogeneity is also structural,
geometric and not only present in dynamic fluctuations.
It may be worth considering introducing a time–spatial
mathematical formulation to account for drug intake,
whereas time and location may be specified. It is of
great importance in pathology cases, where changes
in tissue structure and morphology affect directly the
dynamic profiles of drug diffusion, permeability and
molecular binding. Specific structural changes with
disease may also reveal various paths of deep tis-
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sue trapping of drug and latency nodes which could
explain effects observed in long-tailed observations.
Some thoughts on this have been recently published
in [26].

6.4 Other applications

The formulation given in this paper is in fact valid for
other problemof dose–effect evaluationswhere theHill
curve is used. The alternative function is just minimal
in the (nonlinear) parameters, which may be of benefit
when employed in online (real-time) adaptation to the
patient-specific dynamics.
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